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CHAPTER 1 

INTRODUCTION 

1-1 Mctivation and Purpose of Research 

Turbulent recirculating flows occur in many engineering and 

industrial applications. For example, such flows are found 

in hydraulic channe1s;power plant furnaces and in gas tur- 

bine er,gine combustors. To improve performance in such 

applications, an accurate description of the flow patterns 

are required. Eecause it is both difficult and costly to 

make detailed flow measurements under real operating condi- 

tions, nuinerical si rnulat jon becomes an extremely valuable 

t o o l  for visualizing t h e  flow. Basically, the simulation is 

required to sGlve the time averaged Navier-Stokes equations 

along with a turhulecce model equation or equations for the 

detailed pattens of tne flow. 

Over the years, numerical computation of turbulent 

recirculating flows has been an active research subject. 

Significant develspment has taken placed since the introduc- 

ticn of the turbulence k - E  Eodel [ l ]  in 1974. The solution 

procedure (2; has s t e a a i l y  evolved and now uses the finite 

volume approach to discretite the differential equations and 

employs the SIMPLE aigoritf-rm to solve for the velocities and 

the pressure. ZeceiiZly, efforts have been principally 

directed towards improving the accuracy and efficiency of 
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the computation. 

The finite volume approach requires that a proper 

finite difference operator be available to represent the 

convection transport terms. This operation is necessary in 

order to prevent oscillatory solutions. It has been found 

that implementation of one-sided (upwind) differencing will 

generally give stable solutions. However, it is also real- 

ized that this sc'nemz augments the diffusive effect in the 

crGssflow direction afid recxces the numerical accuracy of 

the results. Finite difference methods that have been 

developed for the purpose of suppressing the diffusion error 

include the skew upwind scheme [ 3 ] ,  the quadratic upwind 

scheme [4], and other higher order methods [ 5 ] .  These 

higher order schmes, whiie very promising, are in many 

cases ccntroversial because they produce questionable 

resuls, particul.arly for complex flows. 

Until a few years ago, most turbulent flow studies 

dealt xith flow in regular shaped geometries in which the 

boundaries coincided with the coordinate lines of either a 

Cartesian or cylindrical coordinate system. For irregularly 

shaped flow domains, since mesh points may not fall on the 

boundaries, a relativeiy large amount of computation in the 

form of interpolation was required. 

Numerical grid generation has been developed to tackle 

flow problems in irregular geometries. By this technique, a 

grid system is numerically generated which permits the gov- 

erning equations to be ccmputed on a uniform mesh without 
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using interpolation for the boundary points. When the grid 

is generatd by locating points along the boundary surfaces, 

it is termed a body-fitted coordinate procedure. 

Appllcations of the body-fitted coordinate transforma- 

tion to turbulent flow problems have appeared in the recent 

literature. But comparison between predicted results and 

measured values is still quite limited. In addition, many 

factors, such as the differencixg method and the grid dis- 

tribution, both of which havp a vital effect on the numeri- 

cal soluticns of complex flows, have not been thoroughly 

investigated. Thus, one objective of the present research 

was to develop and test various numerical methods for calcu- 

lating the properties of turbulent flows in irregular geome- 

tries. 

Grid generation does help to simplify problems having 

arbitrarily shaped boundaries. It is 0bviou.s that as the 

geometry becomes more ccmplex, the grid generation also 

becomes a rougher task. Construction of a sir,gle grid sys- 

tem that covers the entire flowfield would be very difficult 

for complicated flows such as the flow passing over an air- 

craft or through a gas turbine combustor with several pas- 

sages. In suck cases, a better approach would be to divide 

the field intc se;reral subregions and generate an indepen- 

dent grid for each subregion. Grid generation would there- 

fore be a much 

referred to as a 

and is gradually 

easier process. This method has been 

zonai approach or a grid patching technique 

attracting attention in computational fluid 
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dynamics pursuits. With the zonal approach, the grid in 

some regions can be refined to obtain better quality solu- 

tions without affecting the calculation in other regions. 

Moreover, this approach permits the use of different compu- 

tational methods more suited to each of the zones. 

Application of the zonal approach has been implemented 

in Euler equation calculations, but has not yet been 

reported for turbuler?t flows. Recently, Shyy ( 7 1  under- 

scored the need for using zonal grid methods in turbulent 

flow computacions. Shyjr simulated turbulent flow in an 

annular dump diffuser. He found that a single grid system, 

generated cver the whole domain, caused the grid density in 

the annular tube to be much larger than that in the dump 

region. Moreover, he experienced difficulty in refining the 

grid in wall regions. This problem could be alleviated 

using a zonal grid approach that divides the dump diffuser 

into two regions: a dump region with a fine mesh and an 

annular region with a coarse grid. 

The division of a given field into subregions intro- 

duces grid boundaries in the calculation domain. Since 

either grid lines or transformation metrics may not be con- 

tinuous at the interface of any two zones, care must be 

exercised in treating interface points in order to transfer 

information accurately. In fact, proper zonal boundary 

treatment is a key ingredient for successful application of 

this technique. 
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1-2 Previous Work 

There have been several attempts to solve turbulent flow 

probiems by using coordinate transformation and grid genera- 

tion. A diffuser flow was analyzed by Pope [8]. He pre- 

sented the trarisport equations in an orthogonal coordinate 

system. However, the dependent variables were maintained in 

their Cartesian coordinate form rather than expressing them 

in the contravariant form of curvilinear coordinates. This 

representation er.abled t h e  fornulation to be cast into a 

strong conservation form. Since no additional terms arose 

due to stretching the coordinates, the same solution proce- 

dure as used in Cartesian coordinates could be employed. 

Demirdzic et al. [ 9 ]  used a different approach in which 

the equations were expressed in a general form with contra- 

variant velocities and the metric tensors of the coordi- 

nates. This presentaion had more flexibility in handling 

the boundary conditions, However, the transformed equations 

became l engthy  and complicated due to the appearance of cur- 

vature source terms. A l s o ,  the formulation was found to be 

non-conservative, i.e., was not written in divergence form. 

The flow in a reciprocating internal combustor engine was 

studied, but the results were only explained qualitatively. 

guactitative analyses of turbulent flow with various 

swirl conditions ~n diffusers were carried out by Habib and 

Whitelaw [lo] and by Hah [ll]. Habib and Whitelaw calcu- 

lated the flow pattern and turbulence intensity for differ- 

ent configurations of wide angle diffusers. The momentum 
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equations and the k-e turbulence model equation were formu- 

lated in orthogonal coordinates, the same approach as used 

by Pope [ 81. For non-swirling conditions, the predictions 

for the mean velocity compared very well with experimental 

measurements, but predictions of the turbulence kinetic 

energy were not in good agreemect. The results for swirling 

flows were not as accurztely predicted as in non-swirling 

flows. Both mean velocity and turbulence energy were under- 

estimated and the size of the central recirculation bubble 

was overpredicted. 

Hah [ll] investigated the flowfield in small angle dif- 

fusers. The equations were expressed in the same manner as 

Demirdzic et al. [9], i.e., in general curvilinear coordi- 

nates. The turbulent properties were simulated by the alge- 

braic Reynolds stress model with corrections on the coeffi- 

cients to account for the effect of streamline curvature. 

In addition to the hybrid scheme, Hah used the quadratic 

upwind scheme and the skew upwind scheme to test for numeri- 

cal diffusion. Comparing predictions with measurements, Hah 

concluded that only the quadratic upwind and the skew upwind 

schemes could give reliable predictions. The hybrid scheme 

generated excessive numerical diffusion and underpredictd 

the central bubble size by almost 30%. 

Shyy and Correa [i2) studied the impact of numerical 

schemes and grid systems on the solution accuracy and sta- 

bility. They used different methods, including first order 

upwind, second order upwind, skew upwind, quadratic upwind, 
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and central difference schemes, to interpolate the 

convective terms in simple advection problems. The results 

indicated that the hybrid method had a large spreading rate 

in the crossflow direction and induced substantial errors in 

the solution. For other schemes, the accuracy was dependent 

upon the particular problems studied and upon the form of 

the boundary conditions. Calculations were also presented 

f o r  turbulent flow in a two-dimensional gas turbine combu- 

stor. The influences of grid distribution and the differ- 

encing method or, resu1t.s were demonstrated. 

Syed et al., [5] and [GI, investigated numerical diffu- 

s i o n  in a variety of flow problems. They found that numeri- 

cal accuracy was dependerit upon the flow field and mesh 

placement. The flow angle a l s o  had  an effect on the accu- 

racy for a given ccmputational scheme. 

A further investigatioc of turbulent flow in a dump 

diffuser was conducted by Shyy [ ? I .  He performed calcula- 

tions on two levels of grid points and found that a coarse 

grid produced better agreement between the numerical pre- 

dictions and the experimental data than did a fine mesh. 

A.lso, a lower order hybrid difference scheme produced better 

results than did higher order schemes. 

In view of the published results, it may be concluded 

that consistent turbulent flow predictions are still far 

from routine. The influence of grid systems or computa- 

tional methods renains unresolved and continues to be a 

worthwhile subject for exploration. One such area that has 
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not received much attention is the used of structured grids 

in which the flow field is partitioned into zones. Some 

zones may have a coarse grid while others a fine mesh struc- 

ture. It is believed that this provides better ultization 

of the grid. 

The idea of zonal grids is not new; however, it has not 

been applied to turbulent flows. Hessenius & Pulliam [13] 

applied the zonal grid method to the solution of Euler equa- 

tions. Their results stressed the need of a conservative 

treatment at the zone interface. Rai, (141 and [15], later 

developed a conservative zonal boundary scheme using inte- 

gration and interpolation methods to update the values of 

grid points at the zonal interface. The scheme was applied 

to Euler equatian calculations for the case of supersonic 

flow over a cylinder, blast wave diffraction by a ramp and 

one dimensional shock-tube flow. Atta and Vadyak [16] 

solved a three dimensional potential flow over an isolated 

wing and a noninteracting wing/pylon/nacele configuration. 

They generated an overlapped grid region and let the flow- 

field information be transfered through this region. An 

interpolation technique was employed to approximate the 

zonal boundary values. 

Transonic flow over an airfoil was analyzed by Berger 

and Jameson [ 171. Instead of grid patching, they used an 

automatic adaptive grid refinement method. The residual at 

any control volume was monitored after each iteration. If 

the residual was found to be large, grid refinement was 
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imposed on that control volume and the control volume was 

divided into four smaller cells. This procedure created an 

interface between the fine grid and the coarse grid. Berger 

and Jameson studied a number of methods for treating the 

interface and concluded that a conservation approach that 

i’nvolved an interpolation for the value at the cell center 

and the summation/integration for the flux at the cell 

boundaries represented the best choice of the methods inves- 

tigated. They also found that when a non-conservation form 

was used for the interfacial treatment, the predicted drag 

coefficient differed by as much as 20% from the value found 

by using a conservation approach. 

1-3 Outline Of The Thesis 

This study is aimed at the development and verification of 

numerical me’chods which include a zonal grid approach for 

turbulent flow Computations in ccnbustor geometries. The 

e f f o r t  is to be accomplished by solving a set of non-linear 

partial differential equations which include the continuity, 

momentum, and turbulence equations in a general curvilinear 

coordinate system for both a single grid and a zonal or par- 

titioned grid. 

In the next chapter the formulation of the governing 

equations together with their boundary conditions is pre- 

sented. A short discussion of turbulence models is also 

included. Chapters 3 to 6 are devoted to the solution 

method for the flowfield calculation. Chapter 3 presents 
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the method of grid generation while the transformation of 

the governing equations and the boundary conditions is dis- 

cussed in Chapter 4. The computational procedure will be 

depicted in chapter 5. The finite volume approach and the 

SIMPLE algorithm are used to facilitate the pressure compu- 

tation. Chapter 6 deals with zonal grid boundary treatment. 

The proposed method contains the generation of an overlap 

region between two grid zones and an interface operator that 

permits numerical information to be transferred accurately 

while preserving the conservation principle. The presenta- 

tion of the results of the computation for both single grid 

ana zoned grid systems is given .in Chapter 7. Results were 

compared against experimental measurements. Finally, the 

conclusions of this study and recommendations for further 

work are discussed in Chapter 8. 
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CHAPTER 2 

GOVERNING EQUATIONS AND TURBULENCE MODEL 

2-1 Time Averaged Continuity and Momentum Equations 

The partial differential equations governing instantaneous 

turbulent fl6w are given in general Cartesian form as: 

Continuity i~ + pui - o a t  axi 

a pu .u  = -  - a a 
- a t  9 + - axi 1 j axi r i j  Manentum 

where = Pc;. . - i;(T aui + 2) a U  + 2 a ” 1  
7 ’ ~  ‘ i j  r i j  a x i  j 1 ;I ( 2 -  3 )  

and 6i, is the Kronecker function, which equals 0 for i * j, 
and 1 f o r  i = j. 

Due to the very small scale of turbulent motion and its 

rapid movement, direct simulation of the above equations 

would require an enormous amount of computer time and stor- 

age, and is, more than likely, not possible. A turbulent 

flow property, 9, can be identified in terms of its mean 

component, 9 ,  and its fluctuating component, 0 ’ .  This is 

known as Reynolds decomposition and is written as: 
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a = + + + '  ( 2 - 4 )  

t o  
where + = G /  a d t  

0 

(2-5) 

In this expression, to is a time interval which is large 

when compared to the time 'of the turbulent oscillations. 

The introduction of Reynolds decomposition allows the gov- 

erning equations to be expressed in the more desirable time- 

averaged form where the variables appear as mean values 

instead of as instantaneous values. For an incompressible 

flow, the time-averaged equations of continuity and momentum 

take the form: 

a Continuity - axi Q u i  = 0 

a -  - -  p u ! u l  1 j  axi  ' i j ax 1 j  
a - a p u . u  = - - Momentum axi  

2 aul + A) + - p -  

+ -) + -3- U ' T  b i j  ( 2 - 8 )  - U ' ( K  

aui au 
q j  - P 6 i j  - U  (ax axi 3 ax, ' i j  

where 
j 

au I 2 1 a u !  J au; 

j ax i  I 

Neglecting the fluctuations in the laminar viscosity, i.e., 

terms containing u t ,  the expression for a i j  has the same 
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form a s  r i j  i n  Equation ( 2 - 3 ) )  b u t  w i th  a l l  t h e  v a r i a b l e s  

t ime-averaged.  

The p rocess  of t ime averaging  produces a d d i t i o n a l  

te rms ,  u'.u! i n  t h e  momentum equa t ions .  These te rms ,  c a l l e d  

t h e  Reynolds s t r e s s e s  o r  t h e  t u r b u l e n t  s t r e s s e s ,  r e p r e s e n t  

- 
1 3 '  

t h e  a d d i t i o n a l  -momenturn t r a n s p o r t  due t o  t u r b u l e n t  motion. 

Equat ions ( 2 - 6 )  and ( 2 - 7 )  can be solved f o r  mean v a l u e s  of 

v e l o c i t y  a n l y  when t h e  Reynolds s t r e s s e s  a r e  known. This  i s  

calfec!  t h e  c l o s u r e  problem. Many a r t i c l e s  have been w r i t t e n  

i n  which t h e  Reynolds s t r e s s e s  have been modeled i n  terms of 

known q u a n t i t i e s  or  mean flow v a l u e s .  The suggested models 

range from simple a l g e b r a i c  expres s ions  t o  s o p h i s t i c a t e d  

p a r t i a l  d i f f e r e n t i a l  equa t ions  - They n o t  on ly  g ive  mathe- 

m a t i c a l  expres s ions  t o  c a l c u l a t e  che s t r e s s e s  b u t  a l s o  pro-  

v i d e  p h y s i c a l  in format icn  about t h e  tu rbu lence .  However, 

t he  more i n f a r m s t i o n  t h e  model c o n t a i n s ,  t h e  more complex it 

becomes. Because t h e  choice  of t h e  model i s  v i t a l  t o  t h e  

r e s u l t i n g  p r e d i c t i o n s ,  a b r i e f  review of t u rbu lence  models 

w i l l  be p resen ted  i n  the following section. 

2-2 Turbulence Models 

2-2-1 Preview 

B a s i c a l l y ,  t u rbu lence  models can be d i v i d e d  i n t o  two ca tago-  

r ies accord ing  t o  whether t h e  Reynolds s t r e s s e s  a r e  d e r i v e d  

from an eddy v i s c o s i t y  concept  o r  determined from t h e  t r a n s -  

p o r t  e q u a t i o n s  f o r  t h e  stresses themselves .  
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The eddy viscosity concept was introduced by Boussinesq 

[18] in 1877. He assumed, in analogy to molecular viscosity 

for laminar flow, that the turbulent stresses are propor- 

tional to the mean velocity gradient. The proportionality 

constant is termed the eddy viscosity p. A general form of 

this concept nay be expressed as: 

where k is the normal stress or the turbulence kinetic 

energy de f ined  by: 

- 
k = -  ' u f u '  ( 2 - 1 0 )  2 t i  

The turbulence normal stresses act like pressure, so when 

Equation ( 2 - 9 )  is used to eliminate u!u'. in the momentum 

equations, the normal stresses can be absorbed into the 

pressure term and need not be calculated explicitly. 

- 
1 3  

Boussinesq' s concept, however, does not resolve the 

closure problem for there remains an unknown: the eddy vis- 

cosity. Eddy viscosity, unlike the molecular viscosity, is 

not a property of the fluid, but depends upon the flow con- 

ditions. It is a function of factors that influence the 

detailed patterns of turbulence and deviating velocities, 

and it is sensitive to the intensity and the length scale of 
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the turbulence. Molecular viscosity can be measured on an 

isolated sample of fluid; eddy viscosity can only be 

obtained by experiments on the flow itself or through calcu- 

lations based on certain hypotheses. Consequently, turbu- 

lence modelling followir,g this approach concentrates on 

determining the Tv-ariatior: of viscosity. 

The first important advance in the determination of 

eddy viscosity was Prandti's mixing length theory (191. The 

basis of this t h e o r y  was that certain characteristics of a 

turbulent flow resembled those found in molecular interac- 

tions. Thus, he used the kinetic theory of gases as a model 

to describe local turbulent exchanges. He assumed that eddy 

viscosity, like molecular viscosity, was a function of den- 

sity, length scal2 and velocity. flowever, Prandtl intro- 

duced a length sca l e  he called the mixing length into the 

derivation for eddy visccslty. The mixing length parallels 

the mean free path for molecular viscosity and physically 

represents the distance a packet of fluid moves before giv- 

ing up its momentum to the surrounding fluid. Further, he 

asstimed that the turbulent velocity was a product of mixing 

length and mean velocity gradient. Accordingly, Prandtl 

obtained the following expression for the eddy viscosity: 

(2-11) 

a u  
ay 

where 1 is the mixing length and - is the mean flow veloc- 
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ity gradient. It has been found that the mixing length 

theory applies very well in turbulent shear flows which have 

a single length scale, but it is not suitable for most tru- 

bulent flows. Tennekes and Lumley [ZO] have presented a 

very critical examination of the mixing length theory. An 

obvious limitation occurs when attempting to calculate flow 

in the center of a pipe, where the velocity gradient is 

zero. At this location, mixing length theory gives a zero 

eddy viscosity . This is clearly incorrect because turbulent 

mixing does not vanish in this region of the flow. 

To overcome the more obvious limitations with the mix- 

ing length theory, turbulence models were developed w h i c h  

account for the transport of turbulence quantities. These 

quantities can be determined from the solution of their cor- 

responding partial differential equations. 

In general, a turbulent field can be characterized by 

two parameters: turbulence intensity and the size or length 

scale of the turbulent eddies. Turbulence intensity is 

measured by the root mean square of fluctuating velocities 

and refers to the energy contained in an eddy. The length 

scale of an eddy is obtained from integration of velocity 

correlation functions. The equations for both quantities 

can be derived from the Navier-Stokes equations by making 

appropriate assumptions. The length scale equation, how- 

ever, can not be presented in a closed form and consquently 

can not be applied directly. 

Examining the process affecting the length scale of 
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eddies suggests that the dissipation rate of turbulence 

energy is an important parameter in turbulent exchanges. 

The dissipation of energy destroys small eddies and thus 

effectively increases the average eddy size. From an energy 

balance of the rate of supply and dissipation over small 

scale eddies, the size of an eddy can be obtained as a func- 

tion of turbulence energy and its dissipation rate; hence, 

[ 2 0 1 ,  

k1.5 I - -  
E: (2-12) 

where  E is the dissipation rate of turbulence kinetic 

energy, def'ined by 

E = "(-- aq ) 2  

p a x j  
(2-13) 

Equation (2-12) effectively removes the length scale  from 

the problem, replacing it with the dissipation rate. The 

latter has been found to be more readily estimated than is 

the former. A turbulence model based on the solution of the 

differential equations above for one or two quantities has 

been proposed by many researchers, e.g., Prandtl [53] and 

Rodi [ 5 4 ] .  These models are now widely referred to as one 

or two equation models. The model in terms of both quanti- 

ties, k and E , developed by Harlow and Nakayama [23] and 
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Jones and Launder [ 241  , has received broad recognition and 

is now commonly known as the k-E model. 

Another approach, which does not use the eddy viscosity 

concept, attempts to determine the Reynolds stresses from 

the solution of partial differential equations or from the 

solution of algebraic equations. The latter are obtained by 

modelling the convective and diffusive terms in the Reynolds 

stresses equations with an algebraic form, if the variation 

of the turbulence stresses are small across the flow. These 

methods, called Reynolds stress models or algebraic stress 

models have been reported by Lzunder et al. [ 251 , Bradshaw 

et al. 1261 and Rodi [ 5 5 ] .  Reynolds stress models employ 

transport equations for the individual stresses. They are 

more elaborate than viscosity-based models. In some cases, 

e.g., [ 2 5 ] ,  the Reynols stress models have shown better pre- 

dictions than the more widely used k-c model. However, due 

to the complexity of these models and the fact that they are 

computationally more expensive, the Reynolds stress models 

are thought to be less versatile than the k-t model for most 

pratical applications. 

2-2-2 Turbulence k-t Model 

The transport equations governing the turbulence properties, 

k and E , can be obtained from the Navier-Stokes equation. 

To derive the kinetic energy equation, *he Navier-Stokes 

equation is first multiplied by the instantaneous velocity 

Ui. The time average of all terms is then taken, and the 
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equation which governs the kinetic energy of the mean flow i 
l is subtracted. The resulting equation becomes 

(2-14) 

The t e r m  labeled (I) is the rate of change of kinetic energy 

and is seen to be due to the turbulent transport term (11), 

the  rate of turbulent production term (111) and the rate of 

dissipation term (IV). The turbulent transport term con- 

&. L a l . n ~  fluxes &rising from velocity fluctuations and viscous 

action. Analogous to the handling of the diffusion trans- 

port, t h e  f l u x  due to the velocity fluctuation can be cast 

into the following form:  

where ak is the Pra.r ,dtl  number 

energy. Making use of Equation 

the kinetic energy equation is: 

(2-15) 

of the turbulent kinetic 

(2-15), the final form of 
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a pUik - a  - - a k  + G - P E  or - a x i  a x i  " e f f  axi 

u t  where u e f f  is the effective viscosity = p + - 
'k 

- aui 

j 
1 J ax 

G is the rate of production = - pu!u ' .  - 

( 2 - 1 7 )  

( 2 - 1 8 )  

( 2 - 1 9 )  

au; 2 
and E is the dissipation = $-(-q) ( 2 - 2 0 )  

Development of the equation for the dissipation of 

energy is tedious. To obtain the equation, the momentum 

equation is differentiated with respect to x1 , then it is 

multiplied by 2 v  E ,  and finally time averaged. The result 

of these operations may be written as follows ( 2 7 ) :  

a Ui 

j 

(2 -21 )  

To make this equation tractable, various assumptions must be 
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introduced. Generally, the first five terms on the right 

hand side of the equation are combined to represent the pro- 

duction term and the term in the last bracket is treated as 

the diffusion term. According to Launder and Spalding [l], 

the wcrkable form of the dissipation equation is 

The ecidy viscosity is then given by: 

( 2 - 2 2 )  

( 2 - 2 3 )  

Equations ( 2 - 1 7 ) ,  ( 2 - 2 2 )  and ( 2 - 2 3 )  constitute the k-E 

mode l ,  which tagether with t h e  coctinuity and momentum equa- 

+ - ’ ?  t , lans  (Equation ( 2 - 6 )  arid Equatior! ( 2 - 7 ) ) ,  form a closed set 

~ 2 ’  equations describing t:lrbulent flows. 

T h e  k-E model contaizs five empirical constants. They 

are determined either from experiments or from computer 

optimization 1211. In grid turbulence, diffusion and pro- 

duction of kinetic energy and dissipation energy are negli- 

gible, so t h a t  C 2  is the only constant appearing in Eq-ca- 

tions ( 2 - l ? )  and ( 2 - 2 2 ) .  Therefore, C2 can be determined 

from the measured rate of decay of kinetic energy behind a 

screen grid. The value of C2 was found to lie in the range 

1.8 to 2.0. The constant C, is determined from experiments 
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of shear layer flows. In such flows, the convective and 

diffusive transport of the kinetic energy are negligible. 

The production of kinetic energy is equal to the dissipation 

and the turbulence is in a state of local equilibrium. 

Equations (2-17) and (2-23) combine to give C p  = ( F / k ,  . 
Msasurenent in this flow [ 2 6 ]  yielded F / k  = 0.3, s o  that C, 

= 0.09. 

2 

C 1  is determined from the following: 

2 K c ,  = c, - 
a t  m (2 -24)  

This equation is derived from the dissipation equation by 

considering the flow in the wall region, where the logarith- 

mic velocity profile prevails and where convection of dissi- 

pation is negligible. The above relation fixes the  value of 

the constant C 1  when the other constants have been chosen. 

The Prandtl numbers of the kinetic energy, uk, and the dis- 

sipation erergy, o f ,  are assumed to be close to unity and 

they are adjusted by computer optimization. The following 

values are recommended by Launder and Spalding [I) based on 

extensive examination of free turbulent flows: 

CIJ c1 c 2  ‘k 

0.09 1 . 4 4  1 .92  1.00 1 . 3 0  

Although these constants are adequate for many flows, it has 

22 



been found that streamline curvature effects, which strongly 

influence turbulent transport in shear layers, are not 

described by the k-r: model with the above constants. A mod- 

ification of the constants, therefore, has been introduced 

to achieve the inclusion of curvature effects, e.g., by 

Laander et al. [ 5 6 ]  and by Leschziner and Rodi [ 5 7 ] .  How- 

ever, these corrections are of an ad hoc nature, and future 

research is required to provide a more rigorous framework 

for the incorporatior? of a curvature correction into the 

turbulence model. 

2-2-3 Wall E’unction 

In general., the k-’t model is valid for high Reynolds number 

flow. In the region close to the wall, viscous effects dom- 

inate and the turbulence model can not be expected to apply. 

There are two methods of treatment for the wall region in 

numerical computation: the wall function method and a low 

Reynolds nurnber modelling nethod. 

The wall function method assumes that, at a point P 

located a distance above the wall and outside the viscous 

subiayer (refer to Figure l), the velocity vector is paral- 

lel to the wall and described by the logarithmic law of the 

wall. With this assumption, the wall boundary conditions, 

such as for the shear stress, are connected to the mean flow 

properties at the point P. The computation thus skips over 

the region of the laminar sublayer where, because of steep 

gradients in the dependent variables, a large number of grid 
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points are required. 

The low Reynolds number model uses the original turbu- 

lence model as a basis and employs a damping effect and 

other functions on the viscosity and the turbulence equa- 

tions to account for the variation of flowfield quantities 

near the wall. This method permits the calculation to 

extend to the solid wall, so that velocities and other quan- 

tities within the laminar sublayer can be described. A 

recent review of the performance of the low Reynolds number 

model was given by Pate1 et al. ( 2 8 1 .  They examined the 

results of several boundary layer type flows and found none 

of these models could be used with confidence in the region 

near the wall. 

In the present work, the flowfield in the main flow 

region is of principle concern. To avoid excessive grid 

points in the laminar sublayer, as mentioned above, the wall 

function metnod was adopted. The first grid point in the 

flow next to the wall is placed just outside the viscous 

layer. At that point, the resulting velocity, Vp, parallel 

to the wall, is given by 

( 2 - 2 5 )  

where u* and y+ are the friction velocity and the dimen- 

sionless wall distance defined, respectively, by: 
F 
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* T W  0.5 
u = ( - )  

P 
(2-26) 

( 2 - 2 7 )  

r W  i s  the shea r  stress a t  t h e  wa l l  K and E a r e  t h e  von-Kar- 

man constant, and t.he roughness parameter ,  r e s p e c t i v e l y ,  w i t h  

t h e  corresponding v a l u e s  of 0 . 4  and 9 . 7 .  Equation ( 2 - 2 5 )  i s  

app l i ed  in t h e  range of nondimensional w a l l  d i s t a n c e ,  Y; I 

between 30 and 209, where the f i r s t  g r i d  p o i n t .  P must be 

l o c a t e d .  T h i s  ra:ige l i e s  between t h e  v i scous  l a y e r  and t h e  

t u r b u l e n t  i n n e r  l a y e r .  In  t h i s  range,  advec t ion  and d i f f u -  

s i o n  of u ' .u '  iire negl iq- ib le  and l o c a l  equ i l ib r ium p r e v a i l s .  

Under this c o n d i t i o n ,  t h e  tu rbu lence  energy equa t ion  f o r  a 

two dimensional  boundary l a y e r  s i t u a t i o n  reduces t o  

-- 
i j  

Product ion  = Ciss ipac ion  

or (2-28) 

Equat ion ( 2 - 2 8 ) ,  t o g e t h e r  w i th  Equation (2-26), and t h e  

assurnption t h a t  th .e  s h e a r  stress a t  t h e  p o i n t  P i s  approxi-  

mate ly  equal  t o  the wal l  shear  s t r e s s ,  l e a d s  t o  

* 2  
U 

= -6 (2-29) 
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Additionally, substituting - au computed from the log law 
aY 

into Equation (2-28) will give the relation for E :  

* 3  
U E = -  

K Y  

C O.' k '*' 

K Y  

u 
E =  or 

( 2 - 3 0 )  

(2-31) 

Equations ( 2 - 2 9 )  and ( 2 - 3 1 )  give the values of k and E at 

the point P without solving the transport equations. 

2-3 Basic Equations For Steady, Incompressible, 

Axisymmetric, Turbulent Swirling Flow 

The cransport equations for the conservation of mass, momen- 

tum, turbulence energy, and dissipation have been presented 

above in general form. For the present study, the steady 

state equations for incompressible, axisymmetric, turbulent 

swirling flow may be written: 

Continuity 

a a p v r  - a x  P U  + - r a r  

x-Momentum 

- a p u u  a x  + -  a p v r u  
r a r  

= o  (2-32) 
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r-Momentum 

9 -Momentum 

a w  a a w  a 
a x  rar ax ' e f f  ax  rar r ' e f f  5 - - -  a puw + p v r w  - - - 

Turbulence energy 

a x  p u k  + a p v r k  - - a - " e f f  - ak - - a r - -  ' e f f  a k  
a r  

- 
rar ax a k  ax rar 'k 

= G - P E  

(2-33) 

(2-34) 

(2-35) 

(2-36) 

Dissipation energy 

(2-37) 
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where G is the production term given by 

(2-38) 

Examination of the above equations reveals that each 

contains terns for convection, diffusion, and source of the 

dependent variables. Consquently, the complete set of equa- 

tions can be written compactly in a single general form for 

an arbitrary dependent variable 0: 

(2 -39)  

where T g  is the effective diffusion coefficient and S# 

denotes the source term. 

2-4 Boundary Conditions 

The governing equations by themselves do not yield a solu-  

tion to a given problem. Additional boundary information is 

required at the inlet, outlet, the axis of symmetry, and the 

solid wall. Examination of the existing literature shows 

that inlet boundary conditions are generally not well 

defined. Previous investigations, [ 2 9 ]  and [30], have found 

that predictions are very sensitive to distributions of 

velocities and turbulence quantities at the inlet. 
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Therefore, experimental measurements at the inlet boundary 

should be used, if at all possible. Lacking this informa- 

tion, the only resort is to make some reasonable estimation 

regarding the values. In most cases, the velocity profile 

at the inlet will be specified or the Reynolds number based 

on inlet properties is known and the velocity assumed to be 

uniform. The turbulence kinetic energy and its rate of dis- 

sipation are generally estimated from the assumption of 

local equilibrium of turbulence or according to the follow- 

ing expressions, see [31] and [ 5 8 ] :  

k = a u 2  

k 1.5 
E = -  

A D  

(2 -40)  

(2 -41)  

where D is the inlet diameter and a and X are constants. 

Although the choice of these constants is arbitrary, they 

may, nevertheless, have some effect on the solution. The 

constants were taken, for the present application, to be 

those of Lilly and Rhode [31): a = 0.03 and X = 0.005. 

Outlet boundary conditions have been found to be less 

troublesome in practice. At the outlet plane, the dependent 

variable or its flux is assumed not to change further in the 

direction normal to the outlet plane. Either the first or 

second derivative of a dependent variable in the normal 

direction is set to zero. The exit plane is located far 
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enough downstream where the flow is strongly outward-di- 

rected and will not influence the upstream properties. The 

boundary values at the exit are obtained from an extrapola- 

tion of Values existing at the inner nodes. The velocity 

components thus obtained must be adjusted to satisfy the 

overall mass balance with respect to the inlet mass flow. 

Along the axis of symmetry, the gradient in the radial 

direction of all variables is set to zero, except for the 

radial velocity component v which is given a definite value 

of zero. 

On the solid boundary, the no slip velocity boundary 

condition is applied. The wall shear stress is calculated 

from the l o g  law or its alternative form 

(2-42 ) 

A zero pressure gradient normal to the wall is often invoked 

and the pressure at the wall is approximated from extrapola- 

tion. Immediately at the wall, the turbulence energy van- 

ishes, but the dissipation is finite. In practice, the tur- 

bulence energy and the dissipation at the point nearest to 

the wall are not computed from the equations'but rather are 

determined from Equations ( 2 - 2 9 )  and (2-31) following the 

wall function concept. 

30 



CHAPTER 3 

GENERATION OF GRID SYSTEM 

IC t h e  development oZ a numerical procedure for so,ving the, 

gcverning eqilations, the  first step is to superimpose a grid 

distribution over the flow domain. For irregularly shaped 

f l o w  domains, nu~!pricc?l methods  of generating the grid have 

been widely used over the ps.st several years. The underly- 

ing ccncept behind the method is to let the coordinates of 

the grid pints emerge from the solution of a set of partial 

differential equations in the physical plane. The grid 

nodes thus generatec? w.il.’i follow the shape of the flow con- 

figuration and part of the new coordinate lines will coin- 

cide with the b m n d a r y  segments of the physical domain. 

This technique t.ransforns an arbitrarily shaped physical 

plane into a square inesh in the computational domain. This 

not only elininates the need for any interpolation at the 

irregular boundaries, but more importantly, allows the grid 

to be clustered in regions of sharp velocity gradients; 

thus, better resolution of the flow is provided. A typical 

ccJordinate transformation is shcwn in Figure 2 .  

Grid generation techniques have gained importance in 

the numerical solution of partial differential equations. 

3ecent developments provide a variety of methods to generate 

and control the grid for better quality of solutions. A 
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comprehensive review of this subject can be found in 

references ( 3 2 1 ,  [33] and [34]. 

In the present study, the method developed by Thomas' 

and Middlecoff [ 3 5 ]  was adopted. They solved a set of 

Poisson equations to generate the grid system. A source 

function was ernpioyed in each equation for controlling grid 

spacings. The proposed source functions contain adjustable 

parameters which are determined from the boundary values. 

A s  a result, the grid distribution was entirely controlled 

by ari a prior selection of boundary grid points. 

The equations for grid generation are given by: 

+ c x x  s Y Y  

To obtain the coordinates of the transformed system, the 

dependent variables in the above equations must be inverted 

with the independent variables. This inversion yields 

= - J 2 ( R x 4 +  Q X  ) 
yxr ln  n 

- 26XEn + 
E E  

ax 

where a = x 2  + y i  
rl 

B =  x x +  
5 r l  

( 3 - 3 )  
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and J denctes t h e  Jacobian  of t h e  t r ans fo rma t ion  

The s c u r c e  ' f u n c t i o n s  F ana Q a r e  used t o  c o n t r o l  t h e  

i n t e r i o r  g r i d  spac ing .  Following Thomas and Middlecoff ,  

t h e s e  a r e  assumed t o  have the form: 

where x arid I) aye f r ee  parameters  which a r e  eva lua ted  by  t h e  

f o 1 3. ow I ng e qu a t  i Q n s : , 

( 3 - 5 )  

O n  t h e  boundar ies ,  t h e  ( s , q )  g r i d  p o i n t s  and t h e i r  l o c a t i o n s  

a r e  w r i t t e n  i n  terrns o f  t h e  p h y s i c a l  c o o r d i n a t e s  ( x , y ) .  

There fo re ,  t h e  d . e r iva t ives  of  x and y wi th  r e s p e c t  t o  5 can 

be c a l c u l a t e d  on t h e  c o n s t a n t  II boundary l i n e s .  S i m i l a r l y ,  

the d e r i v a t i v e s  of  x and y wi th  r e s p e c t  t o  q can be ca lcu -  
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lated on the constant 5 boundary lines. The parameters x 

and J, are then evaluated on the rl and 5 boundary lines, 

respectively, according to Equation (3-5). Once the parame- 

ter x at each mesh point on the n boundary lines and the 

parameter $J on the 5 boundary lines are obtained, their Val- 

ues at interior 7oints can be approximated by using linear 

interpolation. 

Upon introducing R and Q into Equation ( 3 - 2 ) ,  the final 

form of the governing equations are 

The pair of expressions in Equation (3-6) are solved simul- 

taneously on a uniform, rectangular grid, having grid spac- 

ings A< and An eciwal to one. Solution of these equations 

must account for the boundary conditions that specify the 

set of (x,y) values corresponding to the ( 5 , n )  points on the 

boundaries in the computational plane. 

Figure 3 shows the relation between the grid that is 

generated for a bifurcated diffuser in the physical plane 

and that in the computational plane. It can be seen that 

the curved boundaries of the bifurcated diffuser are mapped 

into straight lines and the irregular grid in the physical 

plane is transformed into a square mesh ir, the computational 

plane. 
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CHAPTER 4 

TRANSFORMATION OF BASIC EQUATIONS 

I Once t h e  c u r - J i l i n e a r  coord ina te s  a r e  gene ra t e6  f o r  a g iven  

f l o w  domain, t h e  govern izg  equa t ions  and boundary c o n d i t i o n s  

must. be t ransformed i n  terms of  t h e s e  c o o r d i n a t e s .  There 

a r e  two p o s s i b l e  c h c i c e s  of performing t h e  t r ans fo rma t ion :  

one r e t a i n s  t h e  p h y s i c a l  components of v e l o c i t y ,  whi le  t h e  

o t h e r  u s e s  c c n t r a v a r i e n t  v e l o c i t y  components of t h e  new 

c o o r d i n a t e  system. T h e  former approach was used by Rhie and 

Chow j36) and by Shyy e t  a l .  [ 3 7 ] .  The l a t t e r  method was 

used by Gexirdz ic  e t  al. [ 91. Vinokur [38] h a s  shown t h a t  

f o r  a x  axisymmetric f low,  t h e  governing equa t ions  based on 

c o n t r a v a r i a n t  v e l o c i t y  components, when d i s c r e t i z e d ,  w i l l  be 

cast .  i ~ c c  non-conservat ive form. Hindman [ 391 examined the I 
I 

r e s u l t s  of an unsteady Eu le r  equa t ion  i n  s e v e r a l  conserva-  

t i v e  and non-conser-Jative law forms. Based on h i s  solu- 

t i o n s ,  t h e  conse rva t ive  form was found p r e f e r a b l e  ove r  the 

non-conservat ive form, e s p e c i a l l y  when a shock wave w a s  

p r e s e n t .  Hindman's r e s u l t ,  though, i s  n o t  d e f i n i t e l y  a p p l i -  

c a b i e  t.o t h e  c u r r e n t  c l a s s  of t u r b u l e n t  f low problems. How- 

e v e r ,  i% is 2xpected t h a t  the conse rva t ive  law form may 

e v e n t u a l l y  be mere accep tab le  f o r  numerical  purposes .  

According t o  g e n e r a l  t r ans fo rma t ion  r u l e s ,  the p a r t i a l  

d e r i v a t i v e s  of a f u n c t i o n ,  say  # ,  i n  c y l i n d r i c a l  c o o r d i n a t e s  
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(x,r) can be transfromed to curvilinear coordinates ( 5 , s )  by 

means of following relations: 

Substituting Equation (4-1) 

field in the new coordinate 

into Equation ( 2 - 3 9 ) ,  the flow- 

system will be governed by 

wnere F = ur - v x  
5 11 n 

E 
F, = v x g  - ur (4-3) 

The geometric factors a, B ,  ;r and J have been defined in the 

previous chapter and are all known as part of the grid gen- 

eration procedure. 

The physical significancs of several of the terms given 

above may be advanced: F /fi and F,,/JZ are the covariant 

velocity components normal to lines of constant 5 and TI, 

respectively; f i  and Ja represent the distances between two 

grid points in the TI and 5 directions; B is the angle 

between 5 and TI lines in the physical plane thus, B is a 

measurement of orthogonality. It vanishes when a 5 line and 

5 
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an rl line are orthogonal; and, finally, J denotes the area 

in the ( S , r l )  plane. 

Equation (4-2) has been used by Shyy [7] to solve for. 

the flow in a dump diffuser. Further, a two dimensional 

form of this equaticn was used by Rhie and Chow (361 to 

determine f l o w  past an isolated airfoil. Shyy et al. [37] 

also used it to determine the flow in a gas turbine combu- 

stor. 

Along with the governing equations, the boundary condi- 

tions must also be transformed into curvilinear coordinates. 

If Dirichlet boundary conditions are applied, the dependent 

variables remain the same in both coordinates, so that 

If Neumann boundary conditions are applied, the derivatives 

a n  or -1 must be written in terms of ( 6 , r l )  coordi- 

nates. The unit vector normal to a 5 coordinate is given by 

a4 a @  -I an 9 

(4-5) 

where = position vector of a point on the coordinate line; 

s = arc length along the line; and 

k = unit normal perpendicular to the (s,rl) plane. 

+ dr - d x  + + * dl-l 
d s  d s  Now, since - - -  1 + dy d s  J” = ( X n l  + Y n  J)z (4-6) 
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substituting these into Equation (4-5) produces 

( 4 - 7 ) .  

The derivative of a function in the direction normal to a 

constant 5 line is obtained through the following scalar 

product: 

(4-9) 

In a similar manner, the unit vector and the derivative of a 

function normal to an TI coordinate line are obtained: 

(4-10) 

(4-11) 

The unit vectors n" and ?io are illustrated as they appear in 5 
the physical plane in Figure 4.  
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CHAPTER 5 

NUMERICAL TECHNIQUE AND SOLUTION PROCEDURE 

T7n.o r a i n  f e a t u r e s  cf t h e  s o l u t i o n  method used h e r e i n  a r e  

employment of the f i p i t e  vol.ume approach . and t h e  SIMPLE 

( Semi-Implicit Method f o r  Pressure-Linked Equat ions)  a l g o r -  

i thm.  The latter vas Fronosed  b y  Patankar  e t  a l .  [40]. In  

t h i s  c h a p t e r  t h e  g r i d  a r r a ~ g e n e i i t , ,  t h e  f i n i t e  volume method, 

numericai  a i f f s r e n c i r i g  schemes and t h e  s o l u t i o n  a lgor i thm 

are  desc r ibed  

5-1 Grid Arrangement 

I t  1s weli I < ~ O X S  t h a t  when ~181ny p r i m i t i v e  v a r i a b l e  s o l v e r s ,  

i f  t h e  p r 2 s s u r e  arid vc?oci t i -3s  a r e  s t o r e d  a t  t h e  same nodal 

l o c a t i o n ,  a p r e s s ~ r i l ,  ~ s c i i i a t i o r i  w i l l  occur  which, i n  t u r n ,  

gives rise t o  convergence d i f f i c u l t i e s .  The accepted  method 

f o r  r e s o l v i n g  t h i s  problem i s  t o  use a s t agge red  g r i d  system 

[41] i n  which some flow v a r i a l b l s ,  e . g . ,  v e l o c i t i e s ,  a r e  

d e f i n e d  on one s e t  of nodes,  and t h e  o t h e r  v a r i a b l e s ,  e.g., 

p r e s s u r e ,  ari! def ined  on a I;.,esh t h a t  is s h i f t e d  by one h a l f  

a nodal-space wi th  respect .  t o  t h e  o t h e r  mesh. Th i s  a r range-  

ment e n a b l e s  t h e  v e i c c i t y  f . i e ld  t o  d e t e c t  a p r e s s u r e  d i f f e r -  

ence over  a s i r ,g?e  g r i d  space .  Hence, any p r e s s u r e  change 

between two nodal p o i n t s  w i l l  immediately be r e f l e c t e d  by 

v e l o c i t i e s  i n  t he  momenturn e q u a t i o n s .  
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Figure  5 shows t h e  dependent v a r i a b l e s  d e f i n e d  i n  a 

g e n e r a l  c u r v i l i n e a r  c o o r d i n a t e  system. Grid nodes a r e  

numer ica l ly  genera ted  a t  t h e  i n t e r s e c t i o n  of two c o o r d i n a t e  

l i n e s .  The q u a d r i l a t e r a l  bounded by f o u r  a d j a c e n t  g r i d  

l i n e s  forms a c o n t r o l  volume o r  c e l l .  The v e l o c i t y  compo- 

n e n t s  u and v a r e  p laced  a t  t h e  midpoint of  t h e  c e l l  f a c e s ,  

whi le  t h e  o t h e r  flow p r o p e r t i e s  a r e  p laced  a t  t h e  c e n t e r  of 

t h e  c e l l .  

5-2 The F i n i t e  Volume Method 

5-2-1 A General Transport Equat ion 

The f i n i t e  d i f f e r e n c e  c o u n t e r p a r t  of  t h e  governing equa t ion ,  

Eqxation ( 4 - Z ) ,  i s  de r ived  by u s i n g  t h e  f i n i t e  volume 

method. ? h i s  method assumes t h a t  each v a r i a b l e  i s  enc losed  

13 its own c o n t r o l  volume. For a g r i d  p o i n t  P surrounded by 

i t s  neighbors  E ,  W ,  N, and S, see Figure  2 ,  t h e  governing 

equa t ion  i s  i n t e g r a t e d  over  t h e  c o n t r o l  volume, Jdcdnrde: 

By t a k i n g  A <  = A n  = 1, and c a n c e l l i n g  de,  t h e  r e s u l t i n g  
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equation yields 

To discretize Equation ( 5 - 2 ) ,  a central differencing form is 

used for the diffusion terms and a linear interpolation 

scheme is employed to approximate the convections terms. 

For example, at the west face of a control volume the con- 

vection and diffusion terms are expressed, respectively, as: 

(5-3 1 

Upon introducing expressions of the type immediately shown 

above into Equation (5-2) , a finite difference relation 

between the variable at point P and its neighboring values 

is obtained, viz. , 

where 
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c r 

C S  C n  A N  = D, - - 2 2 A S  = D, + - 

A,, = A E  + A W  + A N  + A S  

(5-6) 

Equations of this kind are formulated for each of the 

flow variables u, v, w, k, and t .  The equation for the 

pressure, the remaining unknown variable, is established in 

the following s e c t i o n .  

5-2-2 Pressure Equation 

The pressure equation is catainec by combining the continu- 

ity equation and the momentum equations. In the transformed 

domain, the continuity equation takes the following form: 

Integrating this equation over a control volume which 

encloses a center node labled P, gives 
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If correct values of the velocities u and v, and hence FS 

and F,, are inserted into Equation ( 5 - 9 ) ,  the equation rep- 

resents conservation of mass. That is, the left hand side 

of Equation (5-9) will be exactly zero. However, velocities 

obtained from the momentum. equations for an assumed pressure 

distribution will generally not satisfy the continuity equa- 

tion exactly,. The assumed pressure distribution thus must 
l 

be corrected and the velocities altered as well. 

The asscmed pressure field is labeled p* and the corre- 

spondinc; velocity fields are labeled u+ and v*. The correct 

pressure and velocities will be 

p = p *  t p '  

(5-10) 

where p '  is the pressure correction and u t  and v' are veloc- 

i t y  corrections. TG oSt.ain the equations that govern u' and 

71' , Ewatron (5-5) for the velocity components is rewritten 

by removing the pressure gradient from the source term. This 

gives an alternative farm as: 

(5-11) 

A'dvp= c A Y V ~  t S "  - rxEal+  a p  rx,, iz a g  i = E  ,W ,N ,S 
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The starred velocities are obtained from the above equations 

by replacing u*, v*, and pi: with corresponding variables, 

i.e. , 

( 5 - 1 2 )  

a P *  **+ rx - V A:v; = z A i v i  + S v  - rx 
i = E , W , N , S  E a n  n a c  

S y  xbtracting Equation (5-11) from Equation ( 5 - 1 2 ) ,  the 

relations for the velocity corrections are found in terms of 

the pressure correction: 

(5-13) 

These ccrrection equations are merely intermediate devices 

that led to the final results. Thus, the omission of some 

of the terms in these equations will have little effect on 

the correctness of the final solutions (401. Accordingly, 

the pair of expressions in Equation (5-13) are simplified by 

dropping the terms IAiui and ZAjvi, i.e. , U V 
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(5-14) 

r r where D' = - 

The correct v e 1 c ; c k t i e v  a r e  t h e n  ob ta ined  by  t h e  fo l lowing  

fcrmulae: 

( 5 - 1 5 )  

The p a r t i a l  differential equa t ion  t h a t  d e s c r i b e s  t h e  pres- 

s s r e  correction p '  i s  der i . ved  b y  i n t r o d u c i n g  Equation ( 5 - 1 5 )  

i r i t c  the  co f i t i nu i ty  eyi.:ati.on, Equat ion ( 5 - 8 ) .  A f t e r  i n t e -  

q r a t i o n  over a control vc).Lurne and use  of the d e f i n i t i o n  f o r  

F and E,, it is  fo.?nd :ha= 5 

where = DUr2 c i ) v # 2  
n n 

(5-16) 
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(5 -17 )  

and F and F, are defined in Equation ( 4 - 3 ) ,  only here in 

terms of starred velocities. It is noted that terms con- 

tai:iing 6 are usually small and it was subsequently found 

that solutions obtained by omitting these terms were not 

gr-estly affected by the omissicn. Therefore, these terms 

were dropped and a central difference was used for the 

derivatives of p ' .  The f i n a l  f o r m  o f  Equaton  (5-16)) simi- 

l a r  to Equation ( 5 - 5 ) )  is then 

5 

P I  
A i p i  + m P 

A p P b  = 
i = E , W , N , S  

and m = - p r F 5 1 w  * e  - p r F n I s  * n  
P 

(5-18) 

(5-19) 

(5-20) 

The source term m is essentially the continuity equation, P 
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Equation (5-9) , evaluated in terms of starred velocities u* 

and v*. It represents t.he mass imbalance of a control vol- 

ume. 

Once the finite difference equations for the dependent 

variables are established, the momentum equations, pressure 

equation, and turbulence model equation are coupled and 

ready to solve. A s  the solutions approach a converged 

value, the mass imbaiafice, rnp, becomes smaller and smaller, 

tending toward z e r o .  A t  that stage, then, p' = 0 at each 

grid point, which is the solution of Equation ( 5 - 1 8 ) .  Thus, 

pressure and velocities need not be corrected further and 

the starred pressare and velocities are the final results. 

5-3 Numerical D i f f e r e n c i n g  Schemes 

In deriving Equation ( , 5 - 5 ) ,  a simple linear interpolation 

has  been used f o r  the convection terms at the cell b0ur.d- 

aries. This form is actually a central difference scheme, 

which has beer? fscnd to cause, numerical instability in the 

solution process unless a very small Peclet number is used. 

One remedy for this problem is to make use of upwind differ- 

encing. By this method, the convective quantities at the 

cell boundaries are set equal to the values upstream of the 

cell face instead of the average of the values on both 

sides. Upwind differencing has been widely used because of 

its superior stabiiity properties. However, this method 

introduces a so-called artificial or false diffusion error 

which emanates from t w o  sources: a relatively large trunca- 
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tion error and the non-alignment of the coordinates with the 

flow direction. This diffusion errcr can severely reduce 

ths. accuracy of the solution, particularly when the flow is. 

dominated' by convection. 

Two approaches have been used to suppress the artifi- 

cial d i f f u s i . o n  error: higher order finite differencing 

schemes and accounting for the flow direction. The former 

practice has lead to the development, for example, of the 

quadratic upwind scheme [ 4 ] ,  and the latter has resulted in 

the development of the skew upwicd scheme [ 3 ] .  Previous 

investigations ha;le shown that these schemes are capable of 

producing more accurate numerical predictions than those of 

the conventional upwind scheme [ 4 2 ] ,  [43]. The improvement 

is significant for laminar flows, but for high Reynolds num- 

ber txrbulent flows, the effective viscosity is much larger 

than the laminar value and the improvement is not as great. 

It must be mentioned that higher order differencing schemes 

can generate solutions having undesirable under- or over- 

shoot values which are, in some cases, beyond physicaliy 

realistic results. In addition, higher order schemes have 

been found to possess greater instability problems. Recent 

analyses, [5), [12] and [ 4 4 ] ,  have also indicated that the 

accuracy of the numerical results obtained from higher order 

schemes were problem dependent and none of these schemes 

would give completely satisfactory solutions for all test 

cases. Because of these difficulties, it was decided that 

higher order differencing would not be investigated herein. 
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In this study, three basic numerical schemes: the 

hybrid, the quadratic upwind, and the skew upwind, will be 

applied. The hybrid scheine is a combination of conventional 

upwind differencing and central differencing. The convective 

terms are approximated with central differences if the grid 

Peclet number lies between -2 and 2 ;  otherwise, an upwind 

scheme is employed. When the upwind scheme was used, physi- 

cal diffusion was neglected. FDr example, on the west face 

of a control vo!-ume, the convection ar.d diffusion terms in a 

hybrid scheme are expressed 2 s :  

P e  ' 2 (5-21) 

In the quadratic upwind scheme, a cell edge value is 

determined by a quadratic interpolation using two adjacent 

nodal values together w i t h  the value at the next upstream 

node. A s  illustrated in Figure ea, this scheme requires 

nine adjacent points to formulate an expression for all 

faces of a control volume. For  a west face property in the 

quadratic upwind scheme, the following are used: 



( 5 - 2 2 )  

Skew up:iir.c! differencing is e s s e n t i a l l y  t h e  same a s  t h e  

h y b r i d  scnen.e. e x c e p t  t h a z  xhen l F e l  1 2 ,  t h e  upwind scheme 

i s  performed or, zhe t r u e  st:reamlines so both  t h e  flow d i r e c -  

t i o n  and t h e  a n q l e  betxeen t h e  f l o w  and t h e  g r i d  l i n e s  a r e  

taker ,  i n t o  consLdera t ion .  A g a i n ,  us ing  t h e  w e s t  f a c e  of a 

cor i t rc l  volume as  a n  i l l u s t r a t i o n ,  as i n  E'iqxre 6b, t he  gen- 

e r a l  ciapendenr. ; l a r i a t l e  € o r  a skew upwind system is given by 

a, = $ 1  P .2 
E! 

(5-23) 

The ccncept  k,s;?ln.-? this scheme is simple,  bu t  t h e  formula- 

t i o n  t o  interpo1at:e $,. or 9 2  i s  a l g e b r a i c a l l y  very  cumber- 

sone s i n c e  four distinct reg ions  f o r  each c o n t r o l  f a c e  a r e  

invDl-;ed. Inplementat ion of t h e  above t h r e e  computat ional  

methods are d e t a i l e d  i n  t h e  Appendix. 

I t  should be mentionec! t h a t  t h e  d i f f u s i o n  terms a r e  

always r ep resen ted  by c e z t r a l  d i f f e r e n c e s  r e g a r d l e s s  of t h e  

value of t h e  P e c l e t  number. Also, a p p l i c a t i o n  of t h e  quad- 

r a t i c  upwind scheme ana t h e  skew upwind scheme is on ly  used 
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on t h e  momentum equat i i rns .  For t h e  tu rbu lence  model 

e q u a t i o n ,  o r  t h e  equa t ion  f o r  any o f  t h e  s c a l a r  p r o p e r t i e s ,  

t h e  hybr id  scheme 'vsas used throughout .  

5-4  The Solution Algorithm 

The f i r , i t e  d i f f e r e n c e  equa t ions  (Equat ion  (5 -5 )  f o r  t h e  

velocities and t u r b u l e c c e  q u a n t i t i e s ,  and Equat ion (5-18) 

f o r  t h e  p r e s s u r e  c o r i e c t i o n )  a r e  so lved  i t e r a t i v e l y  fol low- 

i n g  t h e  SIMFLE aigoritkm [ 4 0 ! .  This  a lgo r i thm i s  a series 

of s t e p s  of estimations and subsequent c o r r e c t i o n s  of t h e  

p r e s s u r e  mid v e l o c i t i e s .  Twc i t e r a t i o n  sequences a r e  

employed: an inr,er sequ.enc2 sild an o u t e r  sequence. The  

o u t e r  i t e r a t i o n  c o n r a i n s  t h e  f c l lowing  c y c l i c  o p e r a t i o n s :  

3 .  The i n t e r n e d i a t e  v e l o c i t . i e s ,  ti* and v*, are o b t a i n s d  by 

s o l v i n g  t h e  corresFonding momentum equa t ions  u s i n g  the 

p rev ious  p r e s s u r e  f i e i d ,  p+ ( a t  t h e  f i r s t  i t e r a t i o n  p* i s  

assumed z e r o ) ;  

2 .  The pres su re  iz=Z:-ect:.on x y . ~ . a t i ~ ~ ~  for p'  i s  so lved .  T h i s  

i s  fo l lowed b y  t h e  subsecpent  c o r r e c t i o n  of t h e  p r e s s u r e  

f i e l d  p and t h e  v e l o c i t y  f i e l d s  u and v through Equat ions  

(5 -10)  and (5-14), r e s p e c t i v e l y ;  

3 .  T h e  e q u a t i o n s  f o r  t h e  remaining v a r i a b l e s  (k, E ,  w) a r e  

so lved  i n  t u r n  arid tfieil t h e  v i s c o s i t y  i s  updated b y  means 

of Equat ion ( 2 - 2 3 ) ;  

4 .  T h e  whole p r o c e s s  i s  repea ted  u n t i l  a converged s o l u t i o n  

f o r  each v a r i a b l e  i s  achieved.  

The i n n e r  i t e r a t i o n  sequence i s  employed t o  s o l v e  the 
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equa t ion  f o r  each v a r i a b l e .  Execution of t h e  sequence i s  

e i t h e r  b y  a l i n e - b y - l i n e  i t e r a t i o n  us ing  a t r i d i a g o n a l  

ma t r ix  a lgor i thm (TDMA) o r  by p o i n t  i t e r a t i o n  us ing  t h e  

Guass-Seidel method. When us ing  t h e  l i n e - b y - l i n e  TDMA 

method, complete convegence of t h e  s o l u t i o n  i s  no t  necessary  

and u s u a l l y  2 tt; 7 sweeps of  t h e  f i e l d  s u f f i c e  f o r  the i t e r -  

a t i o n .  A l t e r n a t e l y ,  i f  t h e  Gauss-Seidel method i s  used ,  a 

change of  l e s s  t han  20% of t h e  r e s u l t s  between two consecu- 

t i v e  i t e r a t i o n s  i s  adequate t o  advance t h e  c a l c u l a t i o n  t o  

n e x t  s t e p  i n  t h e  sequence. 

5-5 Convergence, Stability, And Accuracy 

S o l u t i o n  of t h e  f i r ? i t e  d i f f e r e n c e  equa t ions  f o r  t h e  t.urbu- 

l e n t  f low p r o b l e m  cons idered  i n  t h i s  s tudy  r e q u i r e s  

u n d e r r e l a x a t i o n  a t  each i t e r a t i o n  i n  o r d e r  t o  suppress  d iv-  

s rqence .  The m a e r r e l a x a t i o n  f a c t o r  i s  a r b i t r a r i l y  ass igned  

and ranges from 0 . 1  t o  0 . 5  depending on flow types, g r i d  

systems,  and ncrnerical schemes. The convergence c r i t e r i a  

may be e s t a b l i s h e d  based on t h e  r e s i d u a l  of t h e  f i n i t e  d i f -  

ference equa t ion  o r  on an e v a l u a t i o n  of t h e  mass imbalance 

a t  each a x i a l  s t a t i o n ,  i . e . ,  ( m s  - min) x 100% /min ( m s  i s  

the mass flow r a t e  through each a x i a l  p l ane  and min is t h e  

mass flow r a t e  a t  t h e  i n l e t ) .  The l a t t e r  c r i t e r i a  i s  

a p p l i e d  i n  t h e  c u r r e n t  work. By t h i s  approach it i s  claimed 

t h a t  converged r e s u l t s  a r e  obta ined  i f  t h e  mass imbalance is 

less  t h a n  0.01% i n  comparison wi th  t h e  mass inf low.  

There a r e  s e v e r a l  p o t e n t i a l  sou rces  of e r r o r  i n  the 
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numerical  s o l u t i o n  of  a d i f f e r e n t i a l  equa t ion .  One source  

i s  a s s o c i a t e d  wi th  t h e  coord ina te  t r ans fo rma t ion  whi le  

ano the r  i s  due t o  t h e  f i n i t e  d i f f e r e n c e  r e p r e s e n t a t i o n  of  

t h e  equa t ion .  I n  r ega rds  t o  t h e  coord ina te  system, numeri- 

c a l  e r ro r  i s  a f u n c t i o n  of t h e  g r i d  spac ing ,  i t s  r a t e  of 

char,ye a c r o s s  t h e  mesh a n d  the d e p a r t u r e  of  g r i d  l i n e s  from 

o r t h o g o n a l i t y .  A pre-:ious ana1ysi.s [ 451 has  shown t h a t  the 

use of  Eq:iatioi-i ( 4 - 1 )  i n  a coord ina te  t r ans fo rma t ion  and 

sahseckie:?t f i n i t 2  d i f f e r e n c i n g  would reduce t h e  s o l u t i o n  of  

thp_ - p a r t i . ~ l  d i f f e r e n t i a l  equat ion  t o  t h a t  of  f i r s t  o r d e r  

accuracy .  A l s ~ ,  nocor thogonal i ty  i n t r o d u c e s  a f a c t o r  of 

( s i n 8 )  $..o t h e  tr1:ncaticn e r r o r .  Obviously,  t h e  s m a l l e r  -I in'-. 

t'*- JLC: angle  betweer, t h e  g r i d  l i n e s ,  i . e .  , t h e  l a r g e r  the 

ronorthogonal  i t y ,  t h e  l a r g e r  t h e  t r u n c a t i o n  e r r o r .  

Numerical errar r e l a t e d  t o  t h e  f i n i t e  d i f f e r e n c e  repre-  

s e z t a t i n n  of  t3e equa t ion  i s  ncrmally viewed from t h e  s tand-  

p o i n t  of t h e  h i g h e s t  t r u n c a t e d  term. However, i n  convec t ive  

doininated t r a n s p o r t  problems, t h e  f a l s e  d i f f u s i o n  e r r o r  

could be more se-:ei-e tiian t h e  t r u n c a t i o n  e r r c r  and should be 

t aken  i n t o  account i n  the e r r o r  a n a l y s i s .  I f  t h i s  were no t  

done, t h e  skew upwind scheme would e x h i b i t  t h e  same numeri- 

cal accuracy a s  t . h E  convent iona l  upwind scheme. Unfortu- 

n a t e l y ,  t h e r e  does no t  appear t o  be a method t o  e x a c t l y  

e v a l u a t e  t h e  magnitude of  t h e  e r r o r  t h a t  stems from numeri-  

c a l  d i f f u s i o n .  

I n  a d d i t i o n  t o  t h e  e r r o r s  examined h e r e ,  t h e r e  remains 

an impor tan t  f a c t o r  t h a t  could a f f e c t  t h e  s o l u t i o n  accuracy:  
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the turbulence model used. It is well known that the k-E 

model has serious defects, but is used only because it out- 

performs other turbulence models when all types of problems 

are ccnsidered. T a k i n g  all these errors into account, it is 

easy t.o understand that the numerical solution of turbulent 

flows is strazgly d e p e n d e n t  upon t h e  grid, differencing 

methods, a;-12 the  turblence m o d e l  used. 
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CHAPTER 6 

A ZONAL GRID TECHNIQUE 

Ir? the t:s? of a z o n a l  g r i d  approach, the mesh for various . 

r e g i o n s  of- the f i e l d  is generated separately. Therefore, 

the g::ici l i n e s  exrendixiq acrass t w o  adjoining regions may 

nst aliqn .t~.itl: each other, a.zd the transformation metrics 

acrcss the son.z;l i n t e r f a c e  ~rbay n o t  be continuous. Computa- 

tion using a zc.r:ed g r i d  method is based on the idea that 

each  r e g i o n  ~f the f1.eLd may be treated independently as a 

boundary va!.uc ?rr.ok,Len. The required boundary conditions 

are obtained eit.i:er E r m  physical arguments or from informa- 

t i c n  s u ~ p l i  ed from a d j  acen?:: reqions using proper zonal 

htmnda.ry schemes. i icr2,ss zcne interfaces, two considera- 

tions must. be ouse rvpd :  c r , r i t i nu i ty  of the dependent vari- 

a b l e s  and consexva t iDn  of fluxes. In the present work, a 

conse rva t iox  f o m  is developed that uses an interpolation 

method. tc trazsfer d a t a  f r o m  a coarse grid region to a fine 

grid regia:: snd ar. int,egration method for the reverse pro- 

ces5.  

Consider %e p a i r  of discontinuous grids shown in Fig- 

ure 7 .  The lixe AB represects the zonal boundary that sepa- 

rates t h e  fine gr1.d (zor?e I >  and the coarse grid (zone 2 ) .  

Let the coordinates be Zf and n f  for zone 1 and 6' and q c  

for zone 2. The pair of indices i, j are used for Lf and 
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qf, respectively, in zone 1 while the pair k, 1 are used for 

Sc and nc, respectively, in zone 2. Since line AB is the 

last line of zone 1, it corresponds to imax. Also, for zone 

2, the line AB corresponds to the index k=2. Suppose the 

solution is to be advanced or, the fine grid in the direc- 

tion from i=l to i=imax. The calculation of the dependent 

variables at the position i=inhx then requires values at the 

downstream points i-imax+l. To obtain the values at these 

zonal bcundar:l poiEts from zone 2, an overlapped region is 

ger,erated by extending the constant o f  lines of zone 1 inco 

zone 2 to intersect the line CD (k=3). This overlapping 

f o r m s  e x t r a  co:lti-cl volumes at the outlet of zone 1, as 

shown in Figure 8. The intersections have indices 

( i : n a x + l ,  j) wher .  rPferer.ced to zone 1. These points also 

correspond to indices (3,l) Khen referenced to zcne 2. Val- 

ues of the depezdent variables enclosed in these outer con- 

t r o l  volumes located either at the cell face or at its cen- 

ter are obtained by interpolation of values from the coarse 

grid. For example, a variable iocated at the celi face, 

marked x, of a control volume PRST in Figure 8 ,  is found by 

interpolation of values from its coarse grid neighboring 

points, marked 0. The values at the x locations are then 

adjusted in order to satisfy global conservation as calcu- 

lated from the coarse grid at the same cross section. The 

global conservation property is satisfied by requiring that 
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where gf and gc are the fluxes through the zonal boundary CD 

for zone 1 and zone 2, respectively, and dnf and dnC are the 

corresponding elements of area normal to the flow direction. 

Ir. a similar nanner, flow prcperties located at the cell 

center can also be updated. The accuracy of the results 

depends upon the order of tke interpolation scheme. A third 

order Lagrange pc1:JJnonial w s s  ::sed to interpolate the values 

of 1 1 ,  v, and p. Sowever, due to the large variation in the 

radiai c'irection. and to prevent unrealistic negative values 

from appearing, a linear scheme was used for turbulence 

quantities. 

To updace t h e  zoiial  boucdary points of the coarse grid, 

the overlapped region is constructed by extending the con- 

stant n c  lines of 2crr.e 2 intc zone i. Consquently, these 

lines will intercept zhe line EF, as shown in Figure 9. 

Line EF corresponds to izimax-1 of zone 1 or to k=l of zone 

2. It can be seen that t i i ~ s  esterision forns control volumes 

outside zone 2. The dependent variables enclosed in these 

exterior control volumes are established by an integration 

method which preserves the coxervation properties of flow 

across the cell boundaries. F o r  a control volume in the 

coarse grid having the boundary PQ as shown in Figure 9a, 

the flux across this area must equal that crossing the cor- 

responding boundaries of fine grid, or 
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If a piecewise ccnstant variation of g between two grid 

points is assumed, as in Figure 9b, where the horizontal 

direction represents t h e  numerical values of the flux and 

the vertical direction represents the grid points, the above 

e q u a t i o n  can be rewritten in discretized form as: 

where N .  is the fractlon of flux of each control volume in 

zone 1 that e n t e r s  the corresponding control volume of zone 

2. It is rioted that wf:en A n C  equals A n f ,  gc will be equal 

to gf, and the flow properties will vary continuously across 

the boundary. 

3 

Tb.e zonal boundary procedure was applied at each itera- 

tion. When tne  comput s t ioc  was advanced from one zone to 

ancther, the zonal boundary points were first updated and 

then the interior points were computed. 



I 

To 

CHAPTER 7 

RESULTS AND DISCUSSION 

erif;r  t h e  de.\relcjped cumericsi meIhods, p r e d i c t e d  r e s u  .ts 

are  compared wi th  e x i s t i n g  experimental  v a l u e s  f o r  s e l e c t e d  

f l o w  co r* f igu ra t ions  of  combustors and d i f f u s e r s .  These 

i n c l u d e  a sudaer. expansion corn5ustor, a 45' expansion combu- 

s t o r ,  a small ang le  c o n i c a l  d i f f u s e r  and a b i f u r c a t e d  d i f -  

f u s e r .  Mcst o f  t h e  c a l c u l a t i o n s  were performed on a 40x21 

g r id ,  o r  more than 800 q r i d  p o i n t s .  The g r i d  chosen r ep re -  

s e n t s  a corr.prornise between accuracy and a v a i l a b l e  computer 

cime. Three f i r . i t e  d i f f e r e n c e  methods: hybr id ,  q u a d r a t i c  

upwind, and  skew upwind, were app l i ed  t o  t e s t  t h e  i n f l u e n c e  

of  numerical  d i f f u s i o n .  However-, i n  many c a s e s  t h e  more 

advanced methods f a i l e d  t o  produce a converged s o l u t i o n  due 

t o  s t a b i l i t y  problems. The f i r s t  s e c t i o n  i n  what follows 

w i l l  present results computed us ing  a single g r i d  system, 

w h i l e  t h e  second s e c t i o n  will p r e s e n t  results from zonal  

g r i d  c a l c u l a t i o n s .  

7-1 Results Using a Single Grid System 

7-1-1 Flow in Combustor Geometries 

Flow in a conf ined  sudden expansion d u c t  h a s  a wide range of 

e n g i n e e r i n g  a p p l i c a t i o n s .  I n v e s t i g a t i o n s  of t h i s  f l o w  have 
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frequently &ppeared ir? the literature and have been used to 

test the perfornarice of computational techniques. 

To simulate this flow, the boundary conditions were 

taken from t h ~  experimental conditions used by Chaturvedi 

(461. At the ir,let, the velocity profile is assumed flat 

and the Reynolds r,unber is 2.5~10 . The duct expansion 

racic is 2 . C ,  i . e . ,  outlet diameter = 2 x inlet diameter. 

The inlet condi~ions far tuur-t.::!.ence kinetic energy and dis- 

sipation energy were r;ct pro-+-Laed and were therefore esti- 

mated acccrding tc Z:quatisr;s (2-39) and (2-40). The grid 

was arrmged a s  shown in FicJv.re 10 for a 40x21 mesh system; 

grid points w e r e  c l u s t e r e d  in the inlet area and near the 

solid wall f'or S e t t e r -  resz:u+ion. Predictions of velocity, 

5 

tu-'. ,,ulencn e:,le;.-c;y, and pressare were compared with existing 

expeririental d a t a .  

FiTdre 11 presexzs r;redi:ted and measured axial veloc- 

ity profiles at three aokinsrream positions, x/D = 1, 3 and 

8 ,  where E; is the d i -me te r  c f  the inlet section. It can be 

seen that, the .rcsirlzs cf the hybrid scheme and the qcadratic 

scheme are almost the same. The predictions agree very well 

with the experimental data for most of the flow. The poor- 

est aqreement OCC!.::~ at X,/D=3.0, where the largest error is 

about 10%. 'The v e l G c i  ty decay along the axisymmetric axis 

is shown in Figure 12 alcnq with the experimental data of 

Chaturvedi 1461 and Stevenson  .$t a1 [ 491. The comparison 

is- seen to be reasonably g o d  for the three differencing 

mechods used. 2 - 2  tLrb*ilsnce energy is compared in Figcre 



-- 
13. Since u'u' was measured in the experiments, in order to 

make the comparison it was assumed that u' = T. 
Alzhough a l l  cf the predicted distributions have the same 

shape as these found expsrimentally, the magnitudes of the 

energy are not a c c u r a t e l y  predicted. The variation of tur- 

bulence intsr.si:ty at the cezter line is shown in Figure 14. 

The calculated v a l x e s  21-9, f c r  the most part, well below the 

measxred values. The reason for this discrepancy is the 

deficiency of ti..;. t:ir!?i:L~nce model, which does not account 

for che e x t r a  s t r a i n  ten.5 i r i  the calculation of the Rey- 

nolds s t resses  ar_d the dissipation rate, [lo] [ 5 8 ] .  Figure 

14 also indiccttns t h a t  1.0-w turbulence intensity is appropri- 

ate for r eFresen - i . ng  the inlet condition for the kinetic 

energy eqcaticx. Mzny ana!yscs, e . 9 .  [ 2 9 ]  and [30], have 

re?ortc?d that t h e  iniet valuer; of k and E have a significant 

irifiuezce on t h e  n u m s r i c a l  acc;lracy of the solution. Albeit 

current t e s t s  dic? not r2vea l  tliat kind of influence, differ- 

e r i t  i n i e t  c f 3 r i d l t l g ~ . s  of k and E were found to change the 

s o l u t i a r .  by ies..; than ?Cy;.  

. .  

Typical plcts of the flov streamlines and the velocity 

flowfieid are depicted in Figures 15 and 16, respectively. 

The recirculation z ~ n e  is clearly identifiable and the 

strer:gth oi' the recirculation is reflected by the size of 

the velocity vectors. The reattachment lengths, normalized 

with the inlet diameter, are listed in Table 1 for the vari- 

ous finite clifference met.hods. Generally, the lengths are 

underpredicted Dy 3.0 to IS:;, as reported by other investiga- 
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tions. 

To evaluate the influence of numerical diffusion, the 

quadratic upwind and the skew upwind differencing methods 

have been incorporated into the solution algorithm. The 

results from these advanced schemes, however, did not show 

improvement over results obtained with the conventional 

hybrid schene. This conclusion agrees with that observed by 

Hackman et al. [ 4 ? ]  and by Syed and Chiappetta [ 6 ] .  Eoth of 

these studies were concerned with flow Over a backward fac- 

ing step for bcth laminar and turbulent conditions. Their 

predictions of the reattachment length, when compared with 

measured values, indicated that an improvement by using 

advanced differencing schemes was significant for laminar 

flows, but only a small galn was realized for turbulent 

flows. This is probably due to the rather large effective 

viscosity that exists in turbulent flow which in turn forces 

the source term in the governing equation to dominate in the 

calculation process. 

The numerical methods were applied to a 45' expansion 

combustor. Lilley and Rhode [31] analyzed this flow using a 

staircase of cells to represent the inclined wall. This 

permitted the computations to remain in a Cartesian coordi- 

nate system. The current work uses a coordinate transforma- 

tion and grid generation technique which provide more flexi- 

bility in distributing the grid. The computations were 

performed in cLrvilinear coordinates with two different 

t-ypes of grid systems. The grids were generated a s  shown in 
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Figure  1 7  f o r  g r i d  

d i f f e r e n c e  between 

I and 

.hese t 

i n  F i g u r e  18 f o r  g r i d  11. The 

JO mesh s y s t e m s  i s  t h e  t r ea tmen t  

o f t h e  i n c l i n e d  w a l l ,  which i s  p a r t  of t h e  r a d i a l  coord ina te  

i n  g r i d  I and i s  p a r t  of  t h e  a x i a l  coord ina te  i n  g r i d  11. 

The g r i d  spac ings  a r e  cor , t racted i n  t h e  r a d i a l  d i r e c t i o n  and 

expanded i n  t h e  a x i a l  d i r e c t i o n  wi th  f a c t o r s  of approxi- 

mately 0 . 9  and 1-06, r e s p e c t i v e l y .  

The p r e d i c t e d  v e l o c i t y  d i s t r i b u t i o n s  a t  d i f f e r e n t  down- 

s t ream 1ocatior:s a r e  show> i n  S igure  19 f o r  g r i d  I and in 

Figure  20 f o r  g r i d  II. The i n l e t  Reynolds number is t h e  

same a s  f o r  t h e  sudden expansion c a s e ,  R e  = 2 . 5 ~ 1 0 ~ .  A l s o  

shown on t h e s e  f i g u r e s  a r e  t h e  experimental  r e s u l t s  of Cha- 

t u r v e d i  [ 461.  When coniputed on t h e  g r i d  I1 mesh, t h e  skew 

ups;ind scheiiie d i d  not ccnverge very  w e l l ,  even f o r  very 

s n a l l  va lues  of t h e  r e l a a t i o n  f a c t o r ;  t h u s  t h e s e  r e s u l t s  

a r e  n o t  shown ir, Figure 20. From Figures  19 and 20 ,  it can 

been seen t h a t  on both  g r i d  systems t h e  ad.Janced scheme5 

prcduced corcparable accuracy t o  t h a t  of  t h e  s o l u t i o n  found 

by u s i n g  hybr id  d i f f e r e n c i a g .  The centerline velocities are 

p r e s e n t e d  i n  F igures  2 1  ar,d 2 2 .  The p r e d i c t i o n s  on g r i d  I 1  

a r e  c l o s e r  t o  t h e  ex7erimental  d a t a ,  b u t  t h e  e r r o r  is r e l a -  

t i v e l y  l a r g e  a t  x/D = 6 . 0 .  The k i n e t i c  energy d i s t r i b u t i o n s  

a r e  shown i n  F igures  23 and 24. I n  t h e  r e c i r c u l a t i o n  

r e g i o n ,  t h e  p r e d i c t i o n s  a re  no t  a c c u r a t e ,  b u t  a t  downstream 

l o c a t i o n s  they  improve s i g n i f i c a n t l y .  The reason f o r  t h i s  

behavior  i s  thought  t o  be connected t o  t h e  tu rbu lence  model, 

f o r  i t  is known t h a t  t he  k-E model does n o t  produce a c c u r a t e  
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results in separated flow regions. The spacial distribution 

of turbulence intensity is shown in Figure 25 for grid I. 

I t  should be noted that high turbulence intensity is gener- 

ated along the shear layer and on the outskirts of the 

recirculation zone. A peak value is located approximately 

three diameters downstream from the flow inlet. Beyond the 

recirculation zcne, the turbulence intensity begins to decay 

and a fully dsvsloped f lcw is Gradually formed. Comparing 

the results on different grid systems, the calculation on 

grid I 1  appears tc produce better solutions. This is 

thought to be due zo the mesh being more orthogonal in grid 

1 1 ,  particulary in t k e  i n l e t  a r ea .  

Figure 26 presents the flow streamlines in a 45' expan- 

sion combustsr. The reattachment length is determined by 

measuring the horizonal ciistance from the flow inlet to the 

rear reattachment point. T h e  computed reattachment lengths 

on different grid systens using various differencing methods 

are shown in Table 2. A l s o  Listed are the results from a 

20x20 grid and a 4 6 ~ 2 9  qrid, alcng with the experimentally 

determined reattachment length, (4.5 times of the inlet 

diameter) as reported by Chaturvedi [ 4 6 ] .  The computed rear 

stagnation points cn a 20x20 coarse grid are substantially 

underestimated for al.l three differencing methods. The pre- 

dictions ten6 to inprove as the number of grid points 

increases except for the case when using the skew upwind 

scheme. For the hybrid and the quadratic upwind schemes, 

nevertheless, there is about a 10% error in the predicted 



v a l u e s  when compared w i t 5  the experimental result. The 

velocity profiles st various axial locations obtained from 

twc different l e - ~ e l s  sf' grids, a 20x20 and a 40x21, are com- 

pared in'Figure 27. The results computed on a 46x29 grid 

are very close to those computed on a 40x21 grid, and are 

no t  s~zown here .  A s  car. be seen, in the portion of the duct 

c o n t a i n i n g  th.e recirculation region (0.0 I x/D 5 4.5), the 

v e l c c i t y  c - o I P ~ ? . I ~ . E ~  f r o ~ ,  a 20x20 g r i d  is underpredicted in t h e  

center por t ic r :  of t h e  duct. This underprediction indicates 

that- The spreadizq r a t e  of the flow in the radial directicn 

is too r a p ~ d .  Coincidentally, the size of the recirculation 

zone and +he reat tachment  length are reduced. Comparing the 

compuations f rom tihe various grids reveals that the results 

a r e  grid dependo:ir fDr t h e  2Ox2C coarse mesh and approach 

s % a t i o n a r y  - , .~a Iues  ir, E, 5 9 x 2 1  grid. 

t'idd:itior,al i x f o r m a . t i o n  concering the ntimber of itera- 

t i azs  recpiz-ed r,s achieve a s o l u t i o n  and the computational 

tiaes are listed in Table 3 .  The skew upwind methcd 

reqdises the xcsz i t e r a t i o n s  a?.d ccmputer time because or' 

the rather l eng thy  caiculation procedure required to deter- 

mine  t h e  coefficients. In addition, it exhibits less sta- 

bi 1 itY 4"-, r..G-i 7 y -  the otl"..cr xyfic schemes and needs smaller relax- 

a t i o x  f a c t o r s  which causes the number of iterations to 

incresss. 

7-1-2 Flow i n  Diffusers 

Diffusers have been widely used in combustors for converting 
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v e l o c i t y  head i n t o  p r e s s u r e ,  and the reby  s t a b l i z i n g  t h e  

f lame.  Two t y p e s  of d i f f u s e r s  were i n v e s t i g a t e d :  a c o n i c a l  

d k f f u s e r  and a b i f u r c a t e d  annular  d i f f u s e r .  Computer runs 

invo lv ing  t h e  c o n i c a l  d i f f u s e r  were based on t h e  d a t a  

r e p o r t e d  by Senoo e t  a l .  [ 4 8 ]  f o r  a c o n i c a l  d i f f u s e r  wi th  a 

1 2  degree t o t a l  expans ion  angle  and ar. o u t l e t  t o  i n l e t  a r ea  

r a t i o  of 4 . 0 .  The i ? ? l e c  2eynol .d~ number was 3 . 0 ~ 1 0 ~ .  All 

c o n p t a t i c n s  W e r e  perforrnec? on t h e  40x20 g r i d  shown i n  Fig- 

u r e  2 8 .  I n l e t  co r l2 i t i on ;  cf a x i a l  v e l o c i t y ,  l it  and circum- 

f e r e n t i a l  v e l c c i t y ,  w ,  were Cakez from measured v a l u e s .  The 

r a d i a l  v e l o c i t y ,  *,I, was assumed t o  be z e r o .  The tu rbu lence  

p r o p e r t i e s  w e r e  estimated f r o m  Equations ( 2 - 3 9 )  and (2-40)  

f o r  t h e  k i n e t i c  energy a d  t h e  d i s s i p a t i o n  r a t e ,  respec-  

t i v e l y .  Four  s w i r l  i n t e n s i t i e s :  0 . 0 ,  0 .07 ,  0 . 1 2 ,  and 0.18 

were t e s t e d .  T h e  s w i r l  in tegs i tqr ,  m ,  is d e f i n e d  a s :  

uwrdr 

R I  u 2  dr 
.- m =  ( 7 - 1 )  

where R i s  t h e  i n l e t  r a d i u s .  

The v e l o c i t y  a t  t h e  o u t l e t  of  t h e  d i f f u s e r  and t h e  

p r e s s u r e  recovery coefficient along t h e  s o l i d  s u r f a c e s  were 

compared wi th  t h e  experimental  d a t a  o f  Senoo e t  a l .  [48]. 

Fig-cre 29 p r e s e n t s  a cornparisor, of t h e  o u t l e t  a x i a l  v e l o c i t y  

a c r o s s  t h e  d i f f u s e r  f o r  t h e  f o u r  s w i r l  i n t e n s i t i e s .  As 

seen ,  f o r  t h e  non-swir l ing  c o n d i t i o n ,  i . e . ,  m=O, p r e d i c t e d  

v a l u e s  a r e  i n  ve ry  good agreement wi th  the experimental  
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data. On the o t h e r  h a d ,  sene disagreement is observed as 

the swirling intensity is increased. The circumferential 

velocity at 2he outlet of the diffuser for different swirl 

intensities is showil in Figure 30. Although most of the 

predic:tions are a d e q c s t e ,  the di.saqreement is as large as 

5C:; st scxe p o r t i o n s  c.f t h e  d u c t .  The variation of pressure 

recotvery ccefficient with s w i r l  intensity is shown in Figure 

31 .. &,le pressure recover.;J coefficient, a measure of the 

efliciency of ?.',?e d~E.fuse:-, is defined as the ratio of the 

difference ,3f t h e  z ~ z \ c ~ ; L c  pr.ess.Are 2: the iniet and outlet to 

the inler .  dyi;arnj.c: pressure of the mEan axial velocity. The 

Fredictkcns a r e  in c:.sscl agreenient. with the experimental data 

f o r  lower ~:a.'Lues c;.f swirl intensity. Beyond a swirl inten- 

sity of aFpraximste!:; 6. i ,  t h e  cornpiitations give smaller 

=ral.ues than those  x.i?asurrd. Errors at high  swirl intensi- 

I. 1, 

e '  ,ies stern f r m  s e ~ ~ e z c i i  pcssibilities, e.g., inlet boundary 

c3..c'; .-J& - --&n 4 n d a t a ,  t h e  xsmerical method used in the calculation 

;:i-ocedur-a, anci peyhaps, r.ost, importantly, the turbulence 

model. -pAe FL-OcC.-.w.3 v...L>.....,.. . - h p ~ ~ ;  ,,,,,,cient is very sensitive to the 

i r? 1 P t ;re 1 o c i ty 2 ro f i 1 e, particularly the thickness of the 

boKndary l a y c ' r .  Experimental studies [SO] have already 

showr. =hat as t f ; c - ?  toundary layer thickness is increased, 

diffuser +Zf ic i+z :cy  decre i l ses .  A computation using a uni- 

fern veiocit;, pr3fiie (no boxndary layer) at the inlet 

resulted in the pressure recovery coefficient being much 

larger  rham zhe values measured. By changing the profile 

toward one possessing a thicker boundary layer, the coeffi- 



c i e z t  was fav:l6 t o  be dran!at ical ly  reduced. In  r ega rds  t o  

t h e  tur5. i lence mcdel,  Habib ar,d Whitelaw [lo] and S t u r g e s s  

and Syed [ 5 1 ;  kave r epor t ed  t h a t  f o r  complicated s w i r l i n g  

flow condirions, the  k - t  t u rbu lence  model i s  no t  adequat.e t o  

d e s c r i b e  t h e  flcx behavior  a c c u r a t e l y .  This  i s  due t o  

stroccj c L r v a t G r o  effects, b r c ~ q h c  about by r a p i d  changes of 

rhe flow iz t h e  a x i a l  d i r e c t i o n ,  which g i v e  r i s e  t o  an e x t r a  

:-ate of  s t r a i r :  i n  a d d i t i o n  t o  simple s h e a r .  This  e f f e c t  

nskes t!iE zs:j'.!XFTiCnS regard ing  t h e  c o n s t a n t  Cp and i s o -  

t r c 9 i z  t~rhl-::~e::ce, used i n  t h e  c o n s t r u c t i o n  o f  t h e  turbu-  

ler&c:e model, i n v a l i d .  Modi f ica t ions  of t h e  c u r r e n t  model t o  

accrzlA;r,t. ~ G I  this s f f e c t  have been proposed, e . g . ,  [51], b u t  

s t i1 . I  requirc f u n h e r  v a l i d a t i o n .  

Axial v e l f > c i t y  contours  for non-swir l ing flow, m = 0,  

z i ~ d  Cor t h e  1arge:l;c s w i r l i n g  flow c o n d i t i o n ,  m=0.18 ,  a r e  

pictted i n  F i p r e s  and 3 3 .  These p l o t s  show t h a t  t h e  two 

cases  have complet,ely d i f f e r e n t  f l o w f i e l d s .  I n  l i g h t l y  

-. c 

S.&ji -r & - i : i c j  1 flows, t h e  f l u i d  i s  p res sed  toward t h e  w a l l  azd 

scFpres ses  t l . i e  f o r m s t i o n  of s e p a r a t i o n .  Th i s  effect 

erliacces the f l u i d  n i x i n g  near  t h e  boundary and d e c r e a s e s  

t h e  bour,dar:i l a y e r  t h i c k n e s s .  As a consequence, the p r e s -  

s x r e  r e c ~ ~ ~ e r y  i s  i nc reased .  However, when t h e  s w i r l  i n t e n -  

s i c y  i s  gre2t i .y  e l e v a t e d ,  a r e c i r c u l a t i o n  zone w i l l  be cre- 

a t e d  along :.he c e n t e r  l i n e .  The c e n t r a l  r e c i r c u l a t i o n  

b t b b l e  reduces th?  e f f e c t i v e  c r o s s  s e c t i o n a l  a r e a  and 

results i n  a i ox  p r e s s u r e  recovery c o e f f i c i e n t .  T h e  maximum 

e f f i c i e n c y  of  t h e  d i f f u s e r  is obta ined  b y  t r a d i n g  o f f  t h e  



effects bewee> 50;:nc!arjs iayer thickness and the effective 

flow are2 brought a b o x t  by swirl. As shown in Figure 29, 

the optimum swirl n.:mber f o r  the maximum pressure recovery 

coefficient is ap;:rcxiinately 3.12, for both the predicted 

and measured f 1 ~ ) ~ s .  

The b i f u r c a t e ?  c=c.mbustor prediffuser is designed to 

provide maximm e ' f i s l e n c ~ ,  in terms of the pressure recov- 

ery, for the ~ ? - 0 : ' t e 5 t  !.ei?gth. A bifurcated diffdser is 

i l l u s t r a c e 5  11: Fig'>.re 34. The diffuser divides the flow 

into two parailel ?a=,sncj.es a;d directs almost equal amocnts 

of flow t o  co.rrE?sps:1di:lg comhus tor chambers. 

The flow SiN;:.3t.j.C>II u s e s  the experimental inlet bound- 

ary condition c?.a+;c? c;f' Lowc et al. [ 5 2 ] .  In their experi- 

ments, three d i f f e r - e n t  inlet velocity prcfiles were gener- 

ated to test che ~ : ~ : r f o r i n z ~ l ~ ~  of the diffuser, but only one 

of them, d e s i g ~ ~ a t e d  a:; t h e  center peaked velocity profile, 

1s empl.oyed in ti:::, stcdy. ',The velocity profile of the flow 

at the inlet is c h ~ w r ~  in FiTdre 35. The average velocity at 

the diffuser i r ~ l 3 t  is 3.7 n,/'sec, the Reynolds  number is 

approximately 2 . 2 ~ 1 0 ~ ~  an3 .the Mach number is 0.247.  Since 

the Mach number .is below 0.3,. the fluid can be treated as 

incompressible. C c r q m t a t i o n s  are performed on two levels of 

grids: a 17x13 ar.A .? 3ix25. Three finite difference methods 

were used: the f i y b s i i l  scheme, the skew upwind scheme and the 

quaaratic upwind ackeine. The grid distribution for the 

36x25 mesh is shown i.r, F igu re  36. Since the actual diffuser 

is short, cnly 2.74 i::ches l ong ,  the usual boundary condi- 
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tion of z e r c  normal qradlent for dapendent variables at the 

exit may nct be f u 1 l . y  rea!-ized. Thus, the exit boundary 

condition is assumed to be such that the second derivative 

of each variable w i t h  respect to 5 is zero. The velocity 

components at the outlet of both ducts are extrapolated from 

ir,ner values and arlj:.isted to satisfy the overall mass con- 

servation. It is r,oted t h z t  flow rates through the inner 

duct and the o u t e r  duct  were not specified, but rather were 

perniittec? tc! seok  ir,divirlual balances.  

The velocit;: tc;r,tours a r e  plotted in Figures 37 and 38 

for different numer ica l  schcnies an the two grid systems con- 

sidered. The v?locity was nornalized by the average of the 

inlet velocity. Tn? profiles computed by the skew upwind 

scheme and by the hybrid ei:k?erne were found to be very simi- 

lar. This is expected since the coordinates were generated 

almost parallel to the streamlines; thus, the diffusion 

error arising fren the streamline-grid-skewness was mini- 

mized. The results obtained by using the quadratic scheme 

show less difr 'us ior l  in the rsdial direction than the other 

two schemes. The velocities at both diffuser outlets are 

plotted against the ex9eri.menta.l data in Figures 39 and 40 

for the 17x13 and. the 3 6 x 2 5  g r i d s ,  respectively. The exper- 

imental data was sca!ed so as to have the same basis as that 

used in the simulatioc. The predicted distributions are 

seer, to agree f a . i r l y  weli with the measurements. The com- 

puted mass flow rs4es through t h e  inner duct and the outer 

duct are conpared with  the measured values in Table 4 .  P r e -  
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dicted values are all rather close to the measured 

distributions: 48% through the outer duct and the remaining 

52% through the inner duct. It is worth mentioning that, 

even on the coarse grid, the ratio of the mass division is 

predicted very well. Also, the velocity profiles at the 

diffuser outlet predicted or: the coarse mesh were found to 

be more consistent with the experimental values than those 

predicted o n  :he fine:-  nesh. The flow streamlines and the 

velocity vectors cbtair:er! fro3 using the hybrid scheme on 

the 36x25  grid arc shawfi in Figures 41 and 42, respectively. 

The pressure disrributions as predicted on the fine mesh for 

the tnree differencing schemes are shown in Figure 4 3 .  

sxamination of -chis f igu re  reveals that all three schemes 

produce similar patterns, except near the outlet of the 

Guter duct, where the quadratic upwind shows a small pres- 

sure drop dce to separation. ,predicted pressure coeffi- 

cients along the inner ar,d outer casings are compared with 

che experimental values in Figures 44 and 4 5 ,  respectively. 

Prediction is very good alcng the outer casing, but the 

pressure coefficient is substantially overestimated on the 

- 

inner casing. Ir, addition, the simulation is unable to pre- 

dict the pressure crougk: on the inner casing surface. The 

trough was measured near the diffuser inlet. At this point, 

it is not ciear whether the disagreement is related to the 

computations or atzributed to some experimental difficulty. 

From the several comparisons between predictions and 

experimental data in combustor geometries and in diffusers, 
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it may concluded that numerical accuracy depends upon many 

factors. These include the coordinate system used, the tur- 

bulence model and the inlet flow conditions. The various 

numerical differencing schemes considered have been found to 

exhibit only a minor effest on the results. The accuracy of 

the results seems to involve the placement of the grid more 

than the numerical scheme used. In spite of the deficiency 

of the turhlence model, the flzwfielc! is reasonably pre- 

dicted even thcLgh the tur%uler.ce quantities can only be 

qualitatively simulated. In diffuser flow, a precise 

description of the inlet velocity profile is necessary in 

order to correctly predict the pressure recovery. 

7-2 Results of Zonal Grid Calculations 

The zonal grid approach will be demonstrated in this section 

for problems of flow in a 45' expansior, combustor and in a 

bifurcated diffuser. The flow geometries are the same as 

those used in previous computations for a single grid sys- 

tem. The computations here are mainly used to verify the 

zonal boundary scheme developed earlier and to evaluate the 

effects of the finite differencing methods on the results. 

7-2-1 Flow in a 45' Expansion Combustor 

The flow domain of a 45' expansion combustor is divided into 

two zones separated by a zonal boundary. A fine grid is 

used to cover the inlet z3ne and the recirculation area, and 

72 



a ccarse grid is used to cover the downstream region. The 

number of grid points used in the fine grid zone is 30x21, 

15x20 a3d 30x30, whereas in the coarse grid zone a 5x12 mesh 

is used throughout. For the 15x20 and the 30x30 nets, the 

grid is evenly spaced in the radial direction; however, for 

the 3 i x 2 i  net, the grid is clustered in the wall region. 

Figures 46 and 4'7 shoyd the grid distribution for the uniform 

30x30 and the non-uniform 3Cx21 nets, respectively. The 

discontinuity of coordinate lines at the zone interface is 

self evicefit. Prior testing with uifferent computational 

schemes revealed that the f i n a l  solution was determined more 

by how it was calculated in the upstream region than what 

differencing methods were used in the downstream zone. From 

this observati.cn and the fact that the downstream flow is 

nearly parallel to the axial coordinate lines, computations 

xere made using various differencing schemes in the fine 

grid zane, while the hybrid scheme was always applied in the 

coarse grid region. 

Table 5 presents the calculated reattachment lengths 

for slarious computational schemes and meshes. The hybrid 

scheme produced more reliable results than did the other two 

schemes. Predictions based on the skew upwind scheme are 

very low, almost 307; smaller than the measured lengths. 

The lengths predicted when using the quadratic scheme are 

mixed. A possible reason for this behavior is that the 

zonal interface is not handled very well at the wall region 

because of high gradients that exist there. It was a l s o  
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thought that the grid in the downstream zone might be too 

coarse. However, the mesh in the coarse grid zone was 

halved without appreciably affecting the results. The 

velocity profiles computed on the 30x30 mesh system are 

shown in Figure 48. The predictions compare favorably with 

the experimental data and a l s o  show improvement over the 

single grid results at the center portion of the duct at the 

location of L/D = 1.0, (refer to Fiqure 19). In the wall 

region, the predicted veiocities vary according to the dif- 

ferencing method used. Consequently, the estimation of the 

reattachmect length can be expected to differ even though 

the velocity field comparison is good for most regions of 

the flow. The radial distributions of turbulence intensity 

at different stations are shown in Figure 49. The results 

are essentially the same as those determined using a single 

grid systen. In particular, within the recirculation zone 

the predictions are not in good agreenent with the measured 

vaules, but ic the downstream region the agreement is very 

good. Figures 50 to 52 depict streamline contours of the 

flow, and contours of the axial velocity and the turbulence 

intensity, respectively. The colltours in each zone are 

plotted independently of each other. Lines of constant 

velocity and the flow streamlines are seen to be continuous 

across the zonal boundary. However, small discontinuities 

in the contours of the turbulence intensicy may be observed 

because a less accurate interpolation scheme was used for 

this variable. 
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7-2-2 Flow in a Bifurcated Diffuser 

The bifurcated diffuser was divided into three computational 

zones: an inlet zone and an upper and lower branch. Two 

different grid systems were used in the computations. The 

coarse grid has an 11x15 mesh in the inlet area and a 14x11 

mesh in each,of the upper and lower branches. The fine grid 

has 16x25, 21x17, and 21x17 grid points for the inlet and 

the two branches, respectively. The grid distribution for 

the coarse mesh is shown in Figure 53, Because each flow 

region is enclosed by a simple block, grids are more easy to 

generate. 

The ratio of the mass di-Jision for various differencing 

methods and grid systerns was first examined. The calculated 

and the measured mass split ratios are listed in Table 6 .  

The skew upwind scheme and the hybrid scheme produced 

results with less grid dependency, and were in good agree- 

mer.t with the measured values. On ths other hand, the pre- 

dictions based on the quadratic scheme did n o t  possess these 

characteristics; the results were found to be better when 

using the coarse grid than when using the fine grid. On the 

fine grid, the mass flow rate was overpredicted in the outer 

duct and underpredicted in the inner duct. The outlet 

velocity distributions are compared in Figures 5 4  and 55 for 

the coarse and the fine grids, respectively. It can be seen 

that the predicted shape of the velocity profiles generally 

aqree with the experimenetal data. However, there is a d i f -  
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f e r e n c e  between p r e d i c t e d  and measured v a l u e s  i n  t h e  r eg ions  

n e a r  t h e  s o l i d  w a l l .  I t  i s  noted  t h a t  i n  t h e  f i n e  g r i d  s y s -  

t e m ,  t h e  q u a d r a t i c  scheme ove rp red ic t ed  t h e  v e l o c i t y  i n  t h e  

o u t e r  d u c t  by a s i g c i f i c a n t  amount i n  t h e  c e n t r a l  r e g i o n .  

Accordingly,  t h e  mass flow r a t e  i s  overes t imated  a s  shown i n  

Table  6 .  The v e l o c i t y  con tour s  f o r  t h r e e  d i f f e r e n c i n g  meth- 

ods a r e  p re sen ted  i n  F igure  56 f c r  t h e  coa r se  mesh and Fig- 

u r e  57 f o r  t h e  f i n e  mesh. The flow p a t t e r n s  a r e  g e n e r a l l y  

t h e  same a s  t h o s e  produced u s i n g  a s i n g l e  g r i d  s y s t e m ,  b u t  

p o s s e s s  l ess  d i f f L s i o n  i n  t h e  r a d i a l  d i r e c t i o n .  The con- 

t o u r s  a r e  observed t o  be cor, t inuous a t  most l o c a t i o n s  a c r o s s  

zcnal boundaries. Some d i s c o n t i n u i t i e s  a r e  seen  nea r  the  

s c l i d  w a l l  of  t h e  o u t e r  d u c t  when u s i n g  t h e  c o a r s e  g r i d s .  

I n  t h a t  r eg ion ,  the v e l o c i t y  v a r i a t i o n  i s  l a r g e  and t h e  

g r i d s  a r e  too  coa r se  t o  obca in  a c c u r a t e  t r a n s f e r  of t h e  

r e q u i r e d  i n f o r m a t i n .  Comparing t h e  v e l o c i t y  con tour s  com- 

pu ted  on t h e  two d i f f e r e n t  g r i d  systems,  i t  i s  found t h a t  

t h e  p r e d i c t i o n s  u s i n g  the h y b r i d  scheme a r e  more c o n s i s t e n t  

t h a n  t h o s e  u s i n g  the o t h e r  two schemes. When u s i n g  t h e  

q u a d r a t i c  upwind scheme and t h e  skew upwind scheme, t h e  

v e l o c i t y  p a t t e r 2  p o s s e s s e s  a c o n s i d e r a b l e  change i n  t h e  

upper  d u c t  a t  t h e  p o s i t i o n  t h e  d u c t  s p l i t s  and a l s o  nea r  t h e  

e x i t .  L ines  of  c o n s t a n t  p r e s s u r e  i n  two d i f f e r e n t  mesh s y s -  

tems a r e  shown i n  E’icpres 5 6  and 59 .  Some d i s c o n t i n u i t y  was 

observed a t  t h e  p o s i t i o n  where t h e  d u c t s  d i v i d e .  The pres -  

s u r e  g r a d i e n t s  ir, t h i s  regiori a r e  very  l a r g e .  F i g u r e  59 

also r e v e a l s  t h a z  t h e  p r e s s u r e  d i s t r i b u t i o n s  a r e  n o t  q u i t e  
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the same when using fine grid points. The reason is 

believed due to the nature of the pressure correction equa- 

tion, which is known not to provide good correction of the 

pressure 'even thaugh it corrects the veiocity field very 

well (401. Runninq in a fine grid system, it is found that 

the rate of convergence of the pressure field is much slower 

than that of the velocity field. Thus, even though the cor- 

rect t-elocity field anc! the ma.ss balance in each grid cell 

are obtained, a correct pressure field may not be completely 

established. 

In this section it has been demonstrated that zonal 

grid caiculations ace capable of producing results of the 

same quality as those using a single grid system. The zonal 

approach has the add i t . i ona?  advantage of permitting an opti- 

mized grid distrib~~tio~ by placing only necessary grid 

points in high gradient regions for the best resolution. 

Unfortunately, the computation, when crossing a zone inter- 

face, requires either integration or interpolation to update 

the boundary poicts cf another zone. This additional proce- 

dure requires extra computer time which tends to o f f s e t  the 

savings from using less grid points. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

Turbulent fioxs in differect corr.bustor and diffuser geome- 

tries were predicted using the k-E turbulence mcdel and dif- 

fersr,t numerical methods.. In addition to a body-fitted 

coordinate transforxacion, a zonal method that partitioned 

the entire flow field ir.to a number of sQbseztions each hav- 

ing its own grid density and local computational scheme was 

incorporated for better utilization of t he  overall grid  

points. Whenever possible, comparisons have been made with 

existing experimental data, and have yielded good results. 

From the foregoing computations and analyses, the following 

concluslons and recommendations can be stated: 

1. A numerical code for two-dimensional axisymmetrical tur- 

bulent flows has been developed to successfully describe 

the flow occurring in different configurations of combu- 

stors and diffusers; 

2 .  A conservative zonal boundary scheme was developed for 

discontinuous grid calculations. The zonal boundary 

scheme was numerically stable in several test cases and 

permitted flow properties to be transferred smoothly 

atross the zonal interface. The results demonstrated the 

capability of using the zonal approach in solving more 

complicaced flow problems; 
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3 .  Numerical accuracy has  been evau la t ed  through t h e  use  of 

v a r i o u s  computati ,cnal schemes inc lud ing  hybr id ,  q u a d r a t i c  

and skew upwind schemes. B a s i c a l l y ,  a l l  t h r e e  schemes 

gene ra t ed  comparable r e s u l t s  on t h e  same g r i d  systems. 

With d i f f e r e n t  g r i d  systems, t h e  p r e d i c t i o n s  were v a r i e d .  

The number of g r i d  points used was l i m i t e d  due t o  com- 

p u t e r  t ime and space;  further- ref inement  of t h e  g r i d s  

u s i n g  a l a r g e  computer i z  suggeszed f o r  b e t t e r  r e s u l t s ;  

4 .  Although v e l o c i t y  ar,d p r e s s u r e  f i e l d s  were reasonably  

p r e d i c t e d  b y  tho k - E  mcde1, t h i s  model was found t o  be 

inacequace t o  d e s c r i b e  t h e  behavior  o f  t h e  tu rbu lence  

q u a n t i t i e s .  Addi t iona l  improvements i n  t h e  k-e model o r  

t h e  use  c f  nore  advanced Reynolds stress models a r e  nec- 

e s s a r y  f o r  a b e t t e r  p r e d i c t i o n  of t u rbu lence  p r o p e r t i e s ;  

5 .  The computer code developed i s  l i m i t e d  t o  imcompressible,  

i so the rma l  f l o w s .  To  f u i l y  d e s c r i b e  t h e  phenomena of 

momer,tilm, h e a t  and mass t r a n s p o r t  i n  a combustion cham- 

b e r ,  i t  is recommended t h a t  an energy equa t ion  and spec- 

i e s  cont inui t ; ]  equa t ions  with a p p r o p r i a t e  chemical reac-  

t i o n s  should be inco rpora t ed  into t h e  program. 
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APPENDIX A 

Implementation of Numerical Schemes 

In  t h i s  s e c t i o n ,  t h e  workable form f o r  computing t h e  c o e f f i -  

c i e n t s  of  t h e  f i n i t e  d i f f e r e n c e  v e r s i o n  of t h e  g e n e r a l  gov- 

e r r i E g  equa t ion  ;Jill be de r ived .  The main concern i s  t o  

e s t i m a t e  a c c u r a t e  v a l u e s  o f  t h e  dependent v a r i a b l e s  a t  t h e  

s u r f a c e  o f  t h e  c o n t r o l  volume whi le  avoid ing  tne i n s t a b i l i -  

t i e s  a s s c c i a t e d  wi th  t h e  convec t ive  terms. 

The i n t e g r a t i o n  of v a r i a b l e  0 i n  Equat ion ( 4 - 2 )  over  a 

c o n t r o l  volume wi th  a c e n t e r  p o i n t  P ( r e f e r  t o  Figure 2 )  

y i e l d s :  

where 
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and S9 has been defined in Equation ( 5 - 7 ) .  Integration of 

the continci t y  e q u a t i o n  y ie lc i s :  

- C W + C "  - c s  = 0 c e  (A -3  1 

If Equatior, ( h - 3 )  

E q u a t i o n  (A-l)! it w i l l  g ive :  

is maitiplied by # P and subtracted from 

(A-4) 

Equation ( A - 4 )  is .L AP forn to wkich different numerical 

schenes will be applied. For simplicity, only the coeffi- 

cient associated with the flux on the west face of the con- 

L r o l  v o l a n e  will be derived. The formulation on the other 

faces can be obtained in the same manner. Three differenc- 

ing methods ha*ie been considered, viz. I hybrid, quadratic 

upwind and skew upwi.n.d. 

I. Hybrid Scheme 

4- 

The hybrid scheme takes the upwind value and neglects 

66  



the diffusion term when the lPel 2 2 

;otherwise central differencing is used for both convection 

and diffusion. Applying this relation to the west face, the 

flux becomes: 

0 ( A - 5 )  

A compact form of Equation ( A - 5 )  is written as: 

I I. Quadratic Upwind Scheme 

This method has been used in many investigations, but 

most do n o t  mention the details of how the scheme might be 

impiementated into a computer code. In the current study, 

the method, as described by Shyy and Correa ( 1 2 1 ,  was 

applied. Substituting Equation ( 5 - 2 2 )  of the variable 0 ,  

into Equation ( A - 1 )  for the flux at the west face of a con- 

trol volume yields 

87 



> o  
" W  

Wr 

b' 

sw* 

< o  
" W  

L - 

b + 

' W  P 0 

* 

A compact form f o r  t h e  f l u x  is w r i t t e n  a s :  

( A - 7 )  



(1) when u I O  and v 2 0 

In this condition, the upwind value falls between $sw 

and Ow, and $ w  is taken to be 

where a is a proportionality constant. The maximum’value of 

a is set equal to one, so the upwind point is never beyond 

the control volume and a is confined by 

- 
a =  rnin(= b ,  1 )  

sw w 

Applying Equation ( A - 9 )  to the flux term, it becomes: 

(A-10) 

(A-11) 

For other combinations of u and v, the resulting coeffi- 

cients of A W  are expressed without comment as follows: 

(2) when u 2 0 and v < 0 

- 
W b  

NW W 
a =  m i n (  , 1 )  

(A-12) 

(A-13) 
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(3) when u < 0 and v 2 0 

( 4 )  wneR u < 3 and v < 0 

-- 
b P  

N P  
a = r n i n ( 7 ,  1 )  

(A-14) 

(A-15) 

( A - 1 6 )  

( A - 1 7 )  

(A-18) 

(A-19) 

( A - 2 0 )  

For each face o f  the control volume, only one of above rela- 

tions exists. T h e  term with ($w - OP) forms the coefficient 

AW, and the other term containing a is included in the 

source term on the right hand side of the equation. 
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Table 1. Reattachment length for flow in a sudden expansion 
combustor; Re = 2 . 5 ~ 1 0 5  

Hybrid 

Skew 

QGadratic 

Measurement [ 461 : L/D = 4.7 

40x20 

4.24 

4.04 

4.23 
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Table 2. Reattachment length for flow in a 45' expansion 
combustor; Re = 2 . 5 ~ 1 0 ~  

20x20 
grid I 

Hybrid 3.68 

Measurement (461 :  L/D = 4.5 

40x2 1 46x29 
grid I grid I1 g r i d  I 

4.19 4.07 4.19 

Skew 3.04 - 
Quadrati c 3.36 4.02 
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Table 3. Number of iterations and compututational time for 
f low in a 45' expansion combustor 

20x20 40x21 1 gr2.d I grid I grid I1 
-.--- 

Hybrid 37'; 422 816 

Skew 300 522 

Qu adr at i c 277 392 720 

- 

Number of -iterations 

46x29 
grid I 

950 

- 
720  

t 

20X2C 40x21 46x29 
qrid I grid I grid I 1  grid I 

11' 8" 25'15" 41'58' ' 88' 8' 
------. . 

Hybrid 

Skew 

Quadratic 8'22' ' 24'31' ' 44' 6'' 67'25' ' 

S ' 2 2 ' '  34'10'' - - 

Computaticnal t i m e  

L 
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Table 4 .  Mass s p l i t  r a t i o  i n  a b i f u r c a t e d  d i f f u s e r ;  
R e  = 2 . 2 ~ 1 0 ~  

17x13 
o u t e r  i n n e r  

H y b r i d  4 7 . 3  5 2 . 7  

Skew 4 7 . 3  5 2 . 7  

Quadra t ic  4 7 . 4  5 2 . 6  

Measurement [ 52 ] : o u t e r  d u c t :  48% i n n e r  d u c t :  52% 

36x25 
o u t e r  i n n e r  

49 .4  5 0 . 6  

49.2 50.8  

49.0 51.0 
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Table 5. Reattachment length for flow in a 4 5 O  expansion 
combustor (zoned grid calculation) 

15x20, 5x12 

--- 
Hybrid 3 . 8 0  

Skew 3.15 

Quadratic 4 . 0 4  

Measurement [ 461 : L/D = 4 . 5  

30x30, 5x12 

4.14 

3 . 3 5  

3.95 

30x2l(ncn-uniform), 5x12 

r 

Hybrid 4.01 

Quadraric 4.46 
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Table 6 .  Mass s p l i t  r a t i o  i n  a b i f u r c a t e d  d i f f u s e r  (zoned 
g r i d  c a l c u l a t i o n )  

J 

Grid I l x l S ,  14x11, 14x11 16x25, 27x15, 27x15 
o u t e r  i n n e r  o u t e r  i n n e r  

Hybrid 4 8 . 1  51.9 46.3 53.7 

Skew 47 .2  52.8 48.6  51.4 

Quadra t ic  46.8 5 3 . 2  5 1 . 2  48.8 

Measurement [ 5 2 ] :  o u t e r  duc t :  48% i n n e r  d u c t :  52% 
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velocity 

/ b y  law 

- -  
sublayer 

- - c  

viscous 

m 

descr ibed 
o f  the  w a l l  

F i g u r e  1. The grid network i n  the  w a l l  region 
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0 Grid for p, w ,  k ,  E 

- Grid for u 

f Grid for v 

F i g u r e  5 .  Szaggered g r i d  and c o n t r o l  volume in curvilinear 
c o o :-d i r: a t e s 
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Figure 6 .  Numerical schemes f o r  e v a l u a t i n g  convec t ion  terms: 
( a )  q x a d r a t i c  upwind scheme; ( b )  skew upwind 
scheme 
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